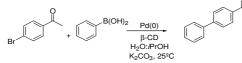


Room-temperature Suzuki-Miyaura reactions mediated by native and derivatized β–cyclodextrins

Aires da Conceição Silva¹, Jaqueline D. Senra^{2*}, Lúcia C. S. Aguiar^{1,2}, Alessandro B. C. Simas², Andréa Luzia F. de Souza¹, Luiz Fernando B. Malta¹

¹ Instituto de Química, Universidade Federal do Rio de Janeiro, CT Bloco A Labs. 641 e 617, RJ, Brazil ² Núcleo de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, RJ, Brazil

*e-mail: jdsenra@hotmail.com


Keywords: Cyclodextrins, Palladium, Suzuki reactions

INTRODUCTION

Suzuki-Miyaura reactions provide a simple and effective synthetic route to biaryls by using a wide range of palladium catalysts^{1,2}. Our group has recently showed that 2-hydroxypropyl- α -cyclodextrin is an effective green reductant/capping agent for the preparation of Pd nanoparticles³ with good catalytic activity in C-C cross-couplings in water. In this work, we present our findings concerning the effect of different β -CDs on the room-temperature Suzuki-Miyaura reaction between phenylboronic acid and 4-bromoacetophenone in the isopropyl alcohol-water system. The results suggest that the nature of the substituents and CD concentration play a role in the catalysis.

RESULTS AND DISCUSSION

As expected, the attempt to render the model reaction (Scheme 1) selective in neat water at roomtemperature (in the absence of native β -CD) led to a low yield of 4-phenylacetophenone by using Na₂PdCl₄ (1 mol%, entry 1). Through a tentative choice, the addition of 10% isopropyl alcohol provided only a moderate yield of the product (entry 2). Following this, we carried out a screening using different β -CD concentrations. Entries 5 and 6 gave the best results, even though biphenyl was observed as by-product (< 15%). Interestingly, by applying 2hydroxypropyl- β -CD (β -HPCD, entry 7) provided the desired product with total product selectivity. Surprisingly, the use of RAME- β -CD (randomly methylated), a well-reported mass-transfer/capping agent, resulted only in a moderate yield (entry 8).

Scheme 1. The Suzuki-Miyaura reaction model.

These previous results suggest that the type of CD along with the Pd:CD molar ratio has a decisive influence on the yield/selectivity of the reaction, probably as a consequence of the nanoparticle formation. The synthetic scope involving different aryl bromides/boronic acids are under investigation. **Table 1.** Suzuki reaction between 4-bromoacetophenone and phenylboronic acid.

Entry	Solvent	Pd:βCD	Yield ^a (%)
1	H ₂ O	-	24
2	H ₂ O: <i>i</i> -PrOH (90%:10%)	-	68
3	H₂O: <i>i</i> -PrOH (90%:10%)	10:1	57
4	H₂O: <i>i</i> -PrOH (90%:10%)	2:1	71
5	H₂O: <i>i</i> -PrOH (90%:10%)	1:2	86 [¤]
6	H₂O: <i>i</i> -PrOH (90%:10%)	1:10	82
7	H₂O: <i>i</i> -PrOH (90%:10%)	1:10	85 ^(c)
8	H₂O: <i>i</i> -PrOH (90%:10%)	1:10	53 ^(a,e)

^aMeasured by GC-MS after 24h. ^b10% biphenyl as by-product. ^cβ-HPCD. ^dRAME- β -CD. ^e5% biphenyl as by-product.

CONCLUSION

The use of β -CDs as supramolecular carriers provides an alternative route to perform Suzuki-Miyaura reactions under exceptionally mild conditions (aqueous medium and room-temperature).

ACKNOWLEDGEMENTS

CNPq, CAPES, FAPERJ, FUJB, IQ/UFRJ.

REFERENCES

- ¹ Miyaura, N.; Suzuki, A. *Chem. Rev.* 1995, 95, 2457.
- ² Bellina, F.; Carpita, A.; Rossi, R. *Synthesis* **2004**, *15*, 2419.
- ³ Senra, J. D.; Malta, L. F. B.; Costa, M. E. H. M.; Aguiar, L. C. S.; Simas, A. B. C.; Antunes, O. A. C. Adv. Synth. Catal. **2009**, 351, 2411.

14th Brazilian Meeting on Organic Synthesis – 14th BMOS – September 01-05, 2011-Brasilia, Brazil