

Synthesis of 7-aryl(alkyl)1,2,4-triazolo[1,5-a]pyrimidine Using **Conventional Methods**

Elisandra Scapin*, Lilian Buriol, Taiana Scalco München, Clarissa Piccinin Frizzo, Mara Marzari, Marcos A. P. Martins

*scapin@uft.edu.br

Keywords: Triazolopyrimidine, 3-amino-1,2,4-triazole, cyclocondensation reactions

INTRODUCTION

chemistry of 1,2,4-triazolo[1,5-a]pyrimidine derivatives has been of considerable interest of medicinal and agricultural chemistry for many years¹. Two very important herbicides, Flumetsulam and Metosulam show acetohydroxyacid synthase properties². Other [1,2,4]-triazolo[1,5apyrimidines with antiparasitic, antimicrobial³ and anticancer⁴ activities also are documented. The more related route to 1,2,4-triazolo[1,5-a]pyrimidine is by use of unsymmetrical vinylogous iminium salts⁵. Other route know-well are cyclocondensation reactions of aminoazoles with, α,β -unsaturated ketoesters and aldehydes in multicomponent reactions⁶. In this context, the objective of this work synthetized 7-aryl(alkyl)1,2,4-triazolo[1,5alpyrimidine from ciclocondensation reaction of βdimethylaminovinyl ketones and 3-amino-1,2,4triazole.

RESULTS AND DISCUSSION

1,2,4-triazolo[1,5-a]pyrimidine 3a-m prepared from ciclocondensation reaction between the corresponding β -dimethylaminovinyl ketones 1am (1.0 mmol) and 3-amino-1,2,4-triazole 2 (1.0 mmol) in acid acetic (5mL) under reflux during 24 hours (Figure 1). After the reaction time the solvent was removed under reduced pressure. The products were extracted with dichloromethane (5mL), washed with water (3 x 5mL) and dried on magnesium sulfate.

 $i = \text{acid acetic}, 118^{\circ}\text{C}, 24\text{h}.$

Figure 1. Synthesis of 7-aryl(alkyl)1,2,4-triazolo[1,5a]pyrimidine 3a-m

The products were obtained with moderate to good yields at a high degree of purity and without additional step of purification (Table 1). The

structure of 1,2,4-triazolo[1,5-a]pyrimidines were determined by spectroscopy of ¹H, ¹³C NMR and Xray diffraction.

1. Yields Table of 7-aryl(alkyl)1,2,4-triazolo[1,5a]pyrimidine 3a-m.

Product	R ¹	yields ^a (%)
3a	CH(OMe) ₂	63
3b	CCI ₃	83
3c	CF₃	73
3d	Ph	61
3e	Ph-Ph	89
3f	4-F-C ₆ H ₄	69
3g	4-Br-C ₆ H₄	78
3h	4-I-C ₆ H ₄	85
3i	Tien-2-il	75
3j	Pirrol-2-il	55
31	4-OMe-C ₆ H ₄	71
3m	4-NO ₂ -C ₆ H ₄	87

^aYield of isolated product.

CONCLUSION

In summary, the synthesis of 7-aryl(alkyl)1,2,4triazolo[1,5-a]pyrimidine described in this paper is a highly regiosselective. The method is practical and simple, resulting in products with moderate to good yields.

ACKNOWLEDGEMENTS

The authors are grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) and CAPES for financial support and fellowships.

REFERENCES

¹ Chen, Q.; Zhu. X.; Jiang, L.; Liu, Z.; Yang, G. Europ. J. Med. Chem. 2008,

^{43, 595. &}lt;sup>2</sup> Chen, C.-N.; Chen, Q.; Liu, Y.-C.; Zhu, X.-L.; Niu, C.-W.; Xi, Z.; Yang, G.-F. Bioorg. Med. Chem. **2010**, 18, 4897.

Battaglia, U.; Moody; C. J. J. Nat. Prod. 2010, 73, 1938
Salgado, A.; Varela, C.; Collazo, A. M. G.; Garcia, F.; Pevarello, P.; Alkorta, I.; Elguero, J. J. Mol. Struct. 2011, 987, 13.
Petrich, S. A.; Qian, Z.; Santiago, L. M.; Gupton, J. T.; Sikorski, A.

Tetrahedron 1994, 42, 13.

⁶ Sarah; A., Mohamed E.; El-Din, H. Salah A. M. J. Heterocyc. Chem. 2004,