

Synthesis of tacrine-lophine hybrids

João Paulo B. Lopes, Jessé S. da Costa, Dennis Russowsky, Marco Antonio Ceschi^{*}

Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Campus do Vale, 91501-970 Porto Alegre – RS, Brazil *mceschi@ig.ufrgs.br

Keywords: Synthesis, Tacrine, Lophine

INTRODUCTION

Our research group has been involved in the development of cholinesterases (ChEs) inhibitors as potential drugs of Alzheimer's disease (AD).¹ Tacrine (1) was the first approved ChEs inhibitor by the FDA for the treatment of AD, although its side effects, the search for tacrine hybrids is very important. The *bis*(7)-tacrine analogues linked by an alkylene chain (*bis*(*n*)-cognitin) were prepared and it was proved that these dimeric molecules of tacrine offered a much stronger potency. As part of our studies directed towards the synthesis and biological screening for compounds with ChEs inhibitory activity, we describe herein or studies on the synthesis of a new series of tacrine-lophine hybrids linked by an alkylene chain.²

Figure1. Tacrine, Lophine and tacrine-lophine hybrid.

RESULTS AND DISCUSSION

Tacrine-lophine hybrids linked by an alkylene chain were prepared as described in Scheme 1. Compounds 4 were synthesized using a previously reported method.² The one-pot four-component reaction of 4, aldehydes 5, benzils 6 and NH₄OAc (7) was carried out in the presence of several Lewis to produce the respective hybrids **3a-g**. InCl₃ was found as the best catalyst for these reactions. All reactions were performed in refluxing EtOH for 96h.

In Table 1 are presented some examples of tacrine-lophine hybrids linked by an alkylene chain. We also synthesized the hybrids bis(7)-lophine and *bis*(7)-tacrine in order to subject to the ChEs inhibitory activity studies.

Scheme 1. Synthesis of Tacrine-Lophine hybrids

Table 1. Lacrir	1e-Lophine	hybrids.
-----------------	------------	----------

Entry	R ²	(CH ₂) _n	Yield ^{a,b} (%)
1	<i>p-</i> Cl	7	3a - 33
2	p-NO ₂	7	3b - 54
3	<i>p-</i> OMe	7	3c - 54
4	<i>p-</i> Cl	8	3d - 57
5	p-NO ₂	8	3e - 39
6	<i>p</i> -CN	8	3f - 33
7	<i>p</i> -OMe	8	3g - 74

^{a)} Reaction were performed using InCl₃ (0.15 equiv.)

^{b)} After purification by flash chromatography..

CONCLUSION

In summary, we have developed an important four-component one-pot condensation synthesis of tacrine-lophine hybrids. The AChE and BuChE biological screening of several new compounds are currently underway.

ACKNOWLEDGEMENTS

CNPq, FAPERGS and PROPESQ-UFRGS

REFERENCES

¹Pisoni, D. S., da Costa, J. S.; Gamba, D.; Petzhold, C. L.; Borges, A. C. A.; Ceschi, M. A.; Lunardi, P.; Gonçalves, C. A. S.; *Eur. J. Med. Chem.* **2010**, *45*, 526..

²Kozurkova, M.; Hamulakova, S.; Gazova, Z.; Paulikova, H.; Kristian, P ,*Pharmaceuticals* **2011**, *4*, 382.

14th Brazilian Meeting on Organic Synthesis – 14th BMOS – September 01-05, 2011-Brasilia, Brazil