

Expeditious syntheses of 3,4-dihydroisocoumarins and phthalides via a Heck-Matsuda reaction.

Forni, J.A.; Biajoli, A.F.P.; da Penha, E.T.; Correia, C.R.D.*

Instituto de Química, Universidade Estadual de Campinas, UNICAMP, C.P. 6154, CEP 13084-971, Campinas, São Paulo, Brasil * roque@iqm.unicamp.br

Keywords: 3-aryl-3,4-dihydroisocoumarin, phthalides, Heck-Matsuda.

INTRODUCTION

The 3-aryl-3,4-dihydroisocoumarins and phthalides are families of natural products that exhibit an extensive list of biological activities.¹ For example, the sweetener phyllodulcin is more effective than sucrose^{1a}, and isoochracinic acid, is a phthalide that causes the black spot disease on Japanese pears^{1b}.

Figure 1. Examples of isocoumarins and phthalides.

Employing Heck-Matsuda (HM) conditions², we developed an efficient protocol for the synthesis of these cores structures using arenediazonium salt **3**.

RESULTS AND DISCUSSION

We started with *p*-AcO-styrene **4** since previous results suggested its advantageous use in HM reaction.³ Initial tests showed that besides formation of the Heck adduct **5**, we also observed compound **6**. After some experimentation, we obtained the cyclized product **7c** in 63% yield. Its formation is readily explained by both the acidification of the medium and the electronic nature of **6**.

Scheme 1. Regiocontrolled syntheses of isocoumarin.

In order to investigate the electronic influence of the substituent, we proceed with arylation of olefins bearing EWG. Thus, the reaction of **3** with methyl vinyl ketone gave the anticipated phthalide **8a** in 65% yield.

The scope of this reaction was explored and the results are summarized in table 1.

Table 1. Synthesis of dihydroisocoumarins and phthalides.

(3)	⁺ + ∕∼R	1 - 1% Pd(OAc) 2 - H ₂ SO ₄ ^{*a} or E	2,EtOH ≘t₃N [™]	$\begin{array}{c} & \bigcap \\ R = \\ Ph(7a), \\ p-MeO-C_6H_4(7b), \\ p-AcO-C_6H_4(7c). \end{array}$	$(a) = R^{-1}$ $(b) = R^{-1}$ (c) = COMe(a), (c) = COMe(a),
#	R	%	#	R	%

#	R	%	#	R	%
7a ^{⁺ª}	Ph	85	8a	COMe	65
7b	$4-\text{MeO-C}_6\text{H}_4$	45	8b [*]	CO ₂ Me	82
7c	4-AcO-C ₆ H ₄	63	8c* ^b	$4-NO_2-C_6H_4$	68

In agreement with our mechanistic proposal (figure 2), we found that olefins bearing EWG provide the phthalide core (**8a**,**8b**,**8c**) whereas those bearing EDG generate the isocoumarin core (**7a**,**7b**,**7c**). The one-pot cyclization took place only in the cases of **7b**,**7c** and **8a**. In the others cases, the desired product was obtained by further addition of acid (**7a**) or base (**8b**,**8c**).

CONCLUSION

An expeditious synthesis of 3,4-dihydroisocoumarins and phthalides was developed. The choice of a 6 or 5 membered ring is made based upon the electronic nature of the group attached to the olefin. Therefore, EDG and EWG groups give the isocoumarin and phthalides, respectively.

ACKNOWLEDGEMENTS

FAPESP, CNPq.

REFERENCES

^{1.}(a) Dick, W.E.; Hodge, J.E. *J. Agric.Food Chem.* **1978**, *26*, 723-725. (b) Kameda,K.; Namika, M. *Chem. Lett.* **1974**, *1491*. ²(a) Heck, R.F.; Nolley, J.P *J. Org. Chem.* **1972**, 37, 2320. (b) Kikukawa, K.; Matsuda, T. *Chem. Lett.* **1977**, 159-162 ^{3.} Moro, A. V.; Cardoso, F. S. P., et al. *Tetrahedron Lett.* **2008**, *49*, 5668-5671.

Figure 2. Rationale for the formation of products. 14th Brazilian Meeting on Organic Synthesis – 14th BMOS – September 01-05, 2011-Brasilia, Brazil