

Screening of keto reductases expressed in conidial fungi from the Brazilian semi-arid region

Serly Santiago Machado¹, Enesio Rodriguez Nascimento Neto¹, Elisa Teshima¹, Osmar Calderon Sanchez², Heiddy Marquez Alvarez¹, Ivan Sergio Colás Gonzáles¹ Luis Fernando Pascholati Gusmão¹, Angélica Maria Lucchese¹

1 Universidade Estadual de Feira de Santana, Av Transnordestina SN, Feira de Santana, Bahia, Brazil 2

Universidad de la Habana. Zapata y G. CP 10400. Ciudad Habana. Cuba

*angelica.lucchese@gmail.com

Keywords: biocatalysis, acetophenone, fungi

INTRODUCTION

Chiral alcohols are key building blocks for many industrial products, such as pharmaceuticals and other high value compounds¹. Although several synthetic methods for the production of chiral alcohols from ketones are known, biocatalysis is one of the most important tools because of its high chemo-, regio- and stereoselectivity, as well as mild and environmentally friendly reaction conditions^{1,2}. Isolated keto reductases or whole-cell biological systems can be used as catalysts to this conversion, and studies seeking new sources of these enzymes have been carried out². It is well established that the screening of a wide variety of microorganisms, which are living in our environment, is one of the methods to obtain new biocatalysts^{1,2}. In this work some conidial fungi from the semi-arid region as biocatalysts the reduction in process of acetophenone to identified potential producers of keto reductases were evaluated.

RESULTS AND DISCUSSION

The identification screening for the of with microorganisms reductase activity was performed with 56 conidial fungi, isolated from dead plant material in Brazilian semi-arid region. Acetophenone in presence of ethanol as co-solvent was used as substrate (0,1% v/v), and after 5 days of incubation the products were analysed by gas chromatography coupled to mass spectrometry (GC/MS). From these fungi, 34 catalysed the bioreduction of acetophenone with conversion rates from 1% up to 55%. The Prelog's rule was followed in 24 bioreduction process yielding the S enantiomer preferentially, of which nine of them with a high stereoselectivity (>99%). Ten fungi catalysed the bioreduction to the anti-Prelog R product but with lower stereoselections (55% up to 94% ee). In table 1 the results of bioreduction with conversion rates higher than 5% are summarized.

 Table 1. Assymetric reduction of acetophenone with conidia fungi

Code	Microorganisms	C (%)	<i>ee</i> (%)
04/06	Sarcopodium circinatrum	5	94 (R)
05/06	Curvularia inaequalis	11	83(S)
07/06	<i>Cladosporium</i> sp	32	86 (R)
21/06	Stachybotrys sp	16	76(R)
27/06	<i>Aspergillus</i> sp	34	55(R)
30/06	Stachybotrys sp	35	67(R)
35/06	<i>Beltrania</i> sp	10	87(S)
38/06	<i>Cladosporium</i> sp	7	79(S)
53/06	<i>Dictyosporium</i> sp	18	>99(S)
73/06	<i>Curvularia</i> sp	15	88(S)
82/06	Periconia sp	43	>99(S)
87/06	Dictyosporium sp	9	>99(S)
98/06	<i>Idriella</i> sp	55	95(S)
101/06	Dictyochaeta sp	44	90(S)
01/07	Stachybotrys sp	9	83(S)
03/07	<i>Curvularia</i> sp	11	>99(S)
12/07	Myrothecium sp	30	>99(S)
16/07	Pestalotiopsis sp	7	>99(S)
26/07	Stachybotrys sp	44	96(S)
35/07	Stachybotrys sp	37	87(S)
36/07	Pithomyces chartarum	15	55(R)
42/07	Periconia hispidula	43	95(S)
114/07	<i>Cladosporium</i> sp	12	82(S)

*c = conversion rates (CG/MS), ee = enantiomeric excess (chiral CG), absolute configuration is in parenthesis.

CONCLUSION

New sources of keto reductases were identified. The *Periconia* sp 82/06 and *Myrothecium* sp 12/07 were the most efficient producers of keto reductases with high enantioselectivity and moderate conversions in the conditions used in this screening.

ACKNOWLEDGEMENTS

Fapesb, CNPq, MCT/PPBio

REFERENCES

¹Carvalho, C.C.C.R. *Biotechnology Advances*, **2011**, *29*, 75. ²Matsuda, T.; Yamanaka, R.; Nakamura, K. *Tetrahedron: Asymmetry*, **2009**, *20*, 513

14th Brazilian Meeting on Organic Synthesis – 14th BMOS – September 01-05, 2011-Brasilia, Brazil