





# Regioselective Synthesis of 3-Haloalkyl-isoxazoles from the Electrophilic Cyclization of Halogenated Oximes

Simone Schneider Amaral<sup>\*, 1</sup> and Paulo Henrique Schneider<sup>2</sup>

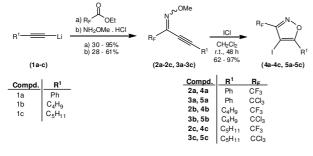
<sup>1</sup>Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Departamento de Ciências

Básicas da Saúde, 90.050-170, Porto Alegre, RS, Brazil.

<sup>2</sup>Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Química, 91501-970, Porto Alegre,

RS, Brazil.

\*simonea@ufcspa.edu.br


Keywords: Electrophilic Cyclization, Haloalkyl-isoxazoles, Heterocycles.

### INTRODUCTION

Heterocycles constitute a major group of organic compounds. Among the great variety of existing heterocycles, the isoxazole core stands out due to its synthetic versatility and broad spectrum of interesting biological activities.<sup>1</sup> Additionally, the development of new strategies for synthesizing halogenated heterocycles has received much attention since the presence of such groups is often associated with improvements in pharmacological properties of organic molecules.<sup>2</sup> From a synthetic perspective, the regio and stereoselective control for the introduction of haloalkyl substituents in heterocycles is limited. Therefore, efficient and simple methods for the straightforward synthesis of haloalkyl-isoxazoles are highly desired.

## **RESULTS AND DISCUSSION**

Several studies showed that the electrophilic cyclization of substituted acetylenes can be an efficient way to generate many heterocycles, including isoxazoles.<sup>3</sup> These results prompted us to evaluate such approach for the synthesis of a series of new 5-alkyl(phenyl)-3-haloalkyl-4-iodo-isoxazoles (4a-4c, 5a-5c) from the electrophilic cyclization of halogenated 2-alkyn-1-one *O*-methyl oximes (2a-2c, 2a-2c). The procedure involves: (*a*) preparation of the ynones, (*b*) synthesis of the *O*-methyl oximes, and (*c*) electrophilic cyclization (Scheme 1).



Some O-methyl oximes (2a-2c, 2a-2c) were isolated as a diastereoisomeric mixture. Two factors be influencing this seem to diastereoisomeric ratio: the R<sup>1</sup> bulkiness relative to the alkyne moiety and the electron withdrawing character of R<sub>F</sub>. In our studies, the desired E isomer was always the predominant product. The O-methyl oximes cyclization was conducted directly from the diastereosiomeric mixture and ICI was selected as the electrophile due to its remarkable performance in previous publications.<sup>3</sup> The (Z)-O-methyl oximes were easily separated from the isoxazoles after cyclization from crystallization or by column chromatography on silica gel.

#### CONCLUSION

Our studies has shown that the synthesis of 5alkyl(phenyl)-3-haloalkyl-4-iodo-isoxazoles from the electrophilic cyclization of halogenated (E)-4alkyl(phenyl)-1,1,1-trihalomethyl-3-in-2-one-Omethyloximes with ICI is very efficient and regioselective. In addition, since the isolated heterocycles are highly substituted they can be further modified in order to improve the molecule proprieties.

## ACKNOWLEDGEMENTS

The authors thank the financial support and fellowships from CAPES, CNPq, FAPERGS, UFRGS and UFCSPA.

## REFERENCES

<sup>1</sup> (a) Eicher, T.; Hauptmann, S. *The Chemistry of Heterocycles – Structure, Reactions, Synthesis, and Applications,* Willey-VHC Verlag GmbH and Co. KGaA, 2<sup>a</sup> ed. **2003**. (b) Taldone, T.; Sun, W.; Chiosis, G, *Bioorg. Med. Chem.* **2009**, *17*, 2225. <sup>2</sup> Taldone, T.; Sun, W.; Chiosis, G, *Bioorg. Med. Chem.* **2009**, *17*, 2225.

<sup>2</sup> Taldone, T.; Sun, W.; Chiosis, G, *Bioorg. Med. Chem.* **2009**, *17*, 2225.
<sup>3</sup> (a) Waldo, J. P.; Larock, R. C. *Org. Lett.* **2005**, *23*, 5203. (b) Chen, Y.; Cho, C.-H.; Larock, R. C. *Org. Lett.* **2009**, *11*, 173.