

Synthesis of two new discotic liquid crystals with 1,3,4-oxadiazole as functional group

Edivandro Girotto, André A. Vieira, Fernando Molin, Hugo Gallardo*

Departamento de Química, Universidade Federal de Santa Catarina-UFSC, 88040-900 Florianópolis,SC, Brasil

*corresponding author e-mail: hugo@qmc.ufsc.br

Keywords: liquid crystal, 1,3,4-oxadiazole, devices

INTRODUCTION

Since the first record of discotic liquid crystals (DLCs) by Chandrasekhar *et al.* in 1977¹, the synthesis and studies of these materials have been increased exponentially. They present remarkable charge transport properties including electronic conductivity², and thus several devices have been built based on these eletrooptical properties, such as solar cells, active components for image and data treatment, among others³. Considering the properties above mentioned, two new molecules were synthesized (5 and 6), which exhibit properties characteristics of liquid crystalline mesogenic with discotic anisometry.

RESULTS AND DISCUSSION

The synthetic route of targets compounds (DLCs) was carried out as described on Scheme 1.

Scheme 1. Synthesis of 1,3,4-oxadiazole derivatives.

The synthetic route for the preparation of compounds **5** and **6** was same for both, changing only the R group. Initially the 3,4-dihydroxybenzonitrile was alkylated with appropriated R group to produce compound **2**, which reacted with sodium azide and ammonium chloride in dry DMF to form tetrazole **3**. The compound **3** was reacted with triacid chloride **4** (previously prepared

from 1,3,5-benzenetricarboxylic acid in thionyl chloride), in pyridine, forming the desired compounds $\bf 5$ and $\bf 6$. The synthesis of alkoxybenzylbromide $\bf 10$, is presented on Scheme 2. The hydroxy group in compound $\bf 7$ was alkylated, and the corresponding esther group was reduced using LiAlH₄ in THF to give $\bf 9$, which reacted with HBr to form the bromide $\bf 10$.

Scheme 2. Synthesis of substituent R (10) of compound 6

All compounds were characterized by ¹H and ¹³C NMR spectroscopy. These final compounds **5** and **6** showed liquid crystalline properties. Compound **5** was characterized by polarized light optical microscopy (POM) and differential scanning calorimetry (DSC). This compound is liquid crystal at room temperature, presenting isotropic phase at 121 ⁰C, and exhibiting columnar mesophase characteristics of DLC's. The analysis of mesophases of compound **6** are under investigation.

CONCLUSION

Two new compounds, **5** and **6**, 1,3,4-oxadiazole derivatives, with liquid crystalline properties were synthesized and both showed luminescent properties.

ACKNOWLEDGEMENTS

UFSC, CAPES, CNPq, INCT-Cat and FAPESC

REFERENCES

H. Lee, J. H.; Han, M. J. Tetrahedron Lett.. 2005, 46, 7143.

² Cristiano, R.; Gallardo, H. *J. Liq. Cryst.* **2005**, 32, 7.

³ Ghedini, M.; Pucci, D. *J. Inorg. Chem. Comm.***2007**,10, 243.

14th Brazilian Meeting on Organic Synthesis – 14th BMOS – September 01-05, 2011-Brasilia, Brazil