

The role of β-bulky alkyl substituents in aldol reactions of boron enolates of methylketones with aldehydes

Emílio Carlos de Lucca Júnior and Luiz Carlos Dias*

Instituto de Química, Universidade Estadual de Campinas, C.P. 6154, 13084-971, Campinas, SP, Brasil

* ldias@iqm.unicamp.br

Keywords: Aldol Reactions, Boron Enolate, 1,5-syn Induction

INTRODUCTION

Recently, we described that the levels of 1,5-*syn* selectivities in aldol reactions involving boron enolates of β -alkoxy methylketones, where the β -alkoxy protecting group is TBS, are dependent on the volume of the alkyl substituent in β -position (Scheme 1).

Scheme 1. Aldol reactions.

Based on these results, we prepared methylketone **5** in order to assess the steric contribution of the β -alkyl substituent in reactions of the corresponding boron enolates with achiral aldehydes.

RESULTS AND DISCUSSION

Our studies began with the preparation of methylketone **5**. Treatment of acid **6** with LiAlH₄ (69%) followed by Swern oxidation (96%) provided **7**. Aldol reaction between **7** and **8** (99%) followed by treatment with TBSOTf (85%) lead to the formation of **9**. Finally, treatment of **9** with MeLi gave methylketone **5** in 99% yield (Scheme 2).

Scheme 2. Preparation of methylketone 5.

The	aldol	reactions	of	methylketone	5	with
aldeh	ydes	10a-g	were	investigated		using

 $(c-\text{Hex})_2$ BCI and Et₃N in Et₂O, providing the 1,5-*syn* and 1,5-*anti* aldol adducts (Scheme 3, Table 1).

Scheme 3. Aldol reactions of 5 with RCHO.

				1,5- <i>syn</i>			1,5- <i>anti</i>			
	1.	(<i>c</i> -Hex) ₂ E	BCI. Et₂N	ŧ		÷.	ŧ.		ŧ	
5		Et ₂ O, -3	30 °C _	TBSO	O	OH	TBSO	Q	ОН	
5	2.	Q	-	Ph ₃ C		∕_R	[™] Ph ₃ C	\nearrow	\nearrow_{R}	
		н∕⊓	−78 °C, 1h	1	11a-g		· ·	12a-g		
_		10a-g								

Га	ble	1 (. A	ldo	l rea	actio	ns	of	5	with	RC	HO.	

ent	aldehyde (R)	dr ^a (1,5- <i>syn</i> :1,5- <i>anti</i>)	yield (%) ^b
1	<i>i-</i> Pr, 10a	> 95:05	95
2	Et, 10b	> 95:05	92
3	<i>t-</i> Bu, 10c	> 95:05	98
4	CH ₂ =C(Me), 10d	> 95:05	94
5	Ph, 10e	91:09	89
6	<i>p-</i> NO ₂ C ₆ H ₄ , 10f	> 95:05	84
7	<i>p-</i> MeOC ₆ H ₄ , 10g	91:09	78

^a Ratio was determined by ¹H and ¹³C NMR analysis of the diastereoisomeric mixture of aldol adducts. ^b Isolated yields of both isomers after SiO₂ gel *flash* column chromatography.

These boron-mediated aldol reactions were found to proceed with good yields and excellent levels of remote 1,5-*syn* stereoinduction.

The relative stereochemistry for aldol adducts **11a-g** and **12a-g** was unambiguously established on the basis of Kishi methodology.⁵

CONCLUSION

The stereoinduction observed in these reactions shows that the levels of 1,5-*syn* selectivities in aldol reactions are really dependent on the volume of the alkyl substituent at the β position.

ACKNOWLEDGEMENTS

We are grateful to FAPESP, CNPq and CAPES.

REFERENCES

¹ Dias, L. C.; Marchi, A. A.; Ferreira, M. A. B.; Aguilar, A. M. *J. Org. Chem.* **2008**, *73*, 6299.
² Paterson, I.; Gibson, K. R.; Oballa, R. M. *Tetrahedron Lett.* **1996**, *37*,

Paterson, I.; Gibson, K. R.; Oballa, R. M. *Tetranedron Lett.* **1996**, *37*, 8585.
³ Evans, D. A.; Coleman, P. J.; Côté, B. *J. Org. Chem.* **1997**, *62*, 788.

⁴ Dias, L. C.; de Lucca Jr., E. C.; Ferreira, M. A. B.; Garcia, D. C.; Tormena, C. F. *Org. Lett.* 2010, *12*, 5056.
⁵ Kobayashi, Y.; Tan, C.-H.; Kishi, Y. *Helv. Chim. Acta* 2000, *83*, 2562.

14th Brazilian Meeting on Organic Synthesis – 14th BMOS – September 01-05, 2011-Brasilia, Brazil