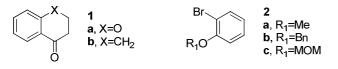


Improved procedure for the α-Arylation of chromanones by *O*-Protected *ortho*-Bromophenols

Jorge L. O. Domingos,¹ Diego Alonso,² Carmem Nájera,^{*2} Paulo R. R. Costa^{*1}

¹Laboratório de Química Bioorgânica, Núcleo de Pesquisas de Produtos Naturais. Centro de Ciências da Saúde, Bloco H, Universidade Federal do Rio de Janeiro, RJ 21941-590, Brazil.² Departamento de Química Orgánica and Instituto de Síntesis Orgánica (ISO), Facultad de Ciencias,Universidad de Alicante, Apartado 99, E-03080 Alicante, Spain

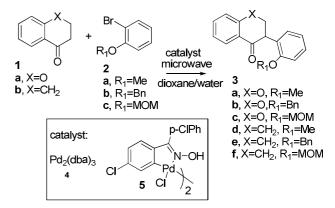

*e-mail: prrcosta2011@gmail.com ; cnajera@ua.es

Keywords: α-arylations, Pd₂(dba)₃, palladacycles

INTRODUCTION

In recent years some procedures for the α -arylation of ketones appeared in the literature, allowing the formation of secondary, tertiary and even quaternary centers. However, only few examples on the use of *ortho*-substituted arylhalides have been described.¹ As part of a project aiming the synthesis of isoflavonoids, we report herein a study on the α arylation of chromanone **1a** and deoxi-chromanone **1b** by *ortho*-bromophenol derivatives **2a-c**.

Figure 1. Ketones and ortho-bromophenol derivatives.


RESULTS AND DISCUSSION

The α -arylations studied are shown in Scheme 1, Table 1. We start our study with the reaction between **1a** by **2a** and a clean transformation of **2a** was observed under microwave irradiation, leading to **3a** (entry 1). The α -arylation goes very well even for more sterically hindered *ortho*-bromophenols **2b** and **2c** (entries 2 and 3). The same trend was observed in the reactions between **1b** and **2a-c** (entries 4-6).

We also used the oxime-derived palladacycle precatalyst **5**, synthesized by the Spanish group and previously used in several carbon-carbon bond-forming reactions in organic solvents as well as in neat water or aqueous solvents.² As shown in entry 7, a complete conversion was also observed in this case.

In contrast with the reported procedures under thermal conditions, which requires more than 2h to completion, under microwave irradiation a total conversion of *O*-protected *ortho*-bromophenols was achieved after 1h of reaction. In addition, products of α , α -diarylation, which are side products in these reactions, could not be detected in the crude product. The chemical yield of these reactions will be reported soon.

Scheme 1. Palladium-catalyzed α -Arylation of **1** by **2**.

Table 1. Yields and main conditions for the reactionsshown in Scheme 1.

entry	1	2	3	conversion
1	1a	а	3a	100%
2	1a	b	3b	100%
3	1a	С	3c	100%
4	1b	а	3d	100%
5	1b	b	3e	100%
6	1b	С	3f	100%
7	1b	а	3d	100%

*2.5 mol% of Pd₂(dba)₃ 4 or palladacycle **5**, 10% mol *t*Bu₃PHBF₄, 20% mol TBAB, 1 eq. bromo-phenol **2**, 2 eq. ketone 1, 2 eq. KOH, 120°C, 80W, 1h , Dioxane/water (4:1). Conversion measured by GC/MS. The reaction mixtures were degassed to prevent hydroxylation at the α -position in the products.

CONCLUSION

The procedure described is usefull to prepare flavonoids,

ACKNOWLEDGEMENTS

CAPES (Brazil), DGU (Spain), FAPERJ and CNPq.

REFERENCES

¹ Bellina, F., Rossi, R., *Eur. J.Org. Chem.* **2010**, 1339 and references cited. ² Botella, L.; Nájera, C., *J. Org. Chem.*. **2005**, *70*, 4360.

14th Brazilian Meeting on Organic Synthesis – 14th BMOS – September 01-05, 2011-Brasilia, Brazil