

Search for an enzymatic approach to achieve the enantiomeric enrichment of β-borylated carboxylic esters

Joel S. Reis and Leandro H. Andrade*

Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP.

*e-mail corresponding author: leandroh@iq.usp.br

Keywords: borylated, hydrolysis, transesterification,

INTRODUCTION

Lipases are the most used enzymes in organic chemistry. Their ability of enantiomers recognition by these biocatalysts represents a useful tool to synthesis of enantiomerically enriched compounds.¹ Additionally, boron-containing compounds have increased the interest of scientists for being important building blocks of bioactive substances.² The organoboron compounds are employed mainly in the Suzuki-Miyaura cross-coupling reactions.³ Herein, we are focused on development of an enzymatic way to enrich enantiomerically boroncontaining carboxylic esters, catalyzed by lipases.

RESULTS AND DISCUSSION

Initially, the carboxylic esters were synthesized from acids or acyl chlorides. β -borylated compounds were synthesized according to the methodology described in the literature.⁴ (Scheme 1).

Enzymatic assays were carried out in order to search of lipase for enantioselective hydrolysis of the compound 3a. Among tested catalysts, CAL-B has shown the highest activity (e.e. 78% for 3a); PSD-I and PSC-II furnished the ester with low e.e. (<10%). Although the product of hydrolysis is the carboxylic acid 4a-b, the efficiency of enzymatic assays was measured by e.e. values of compound 2a. We have also tested to perform the hydrolysis in organic solvents. Water-miscible and waterimmiscible solvents were employed; however, no improvement was detected, leading low e.e. values (10-43%) for 3a. The highest e.e. was obtained when a mixture water:dioxane (9:1) was used as solvent. Our protocol was extended to compounds **3b-f**, which present longer chains / steric hindrance.

		Table 1 – Enzymatic hydrolysis of 3a-f . ^a				
R ¹	Bpin L 3a-f	,CO₂R ³ ·	CAL-B H ₂ O, 32 °C 700 rpm, 24 h	Bpin R ¹ * CO ₂ 3a-f	$R^3 + R^1 $	in ∠CO₂H la-b
	-	Ester	R ¹	R ³	e.e. (%)	
	-	3a	Me	Me	78	
		3b	Me	Et	74	
		3c	Me	<i>n</i> -Bu	<10	
		3d	Me	Oct	rac.	
		3e	Me	Bn	rac.	
		3f	Ph	Et	rac.	_

^a Conditions: H₂O (1 mL), CAL-B (10 mg), **3a-f** (0.05 mmol).

We have observed that these structural changes result in a large decrease in e.e. values. (Table 1). In view of achieve the enantiomeric enrichment of the boron compounds by lipase-catalyzed reaction, we turned our attention to transesterification reactions. Thereby, the reactions were carried out with esters **3a-c**, using a set alcohol as solvent and CAL-B as catalyst. Unfortunately, the preliminary tests gave no product from transesterification reaction. (Table 2).

CONCLUSION

In summary, we have shown an enzymatic way to achieve the enantiomeric enrichment of β -borylated carboxylic esters. Esters presenting a long carbon chain did not suffer any hydrolysis reaction. The improvement of transesterifications are in progress.

ACKNOWLEDGEMENTS

FAPESP, CNPq and CAPES for financial support.

REFERENCES

¹ Faber, K. *Biotransformations in Organic Chemistry*, Springer-Verlag, Berlin, 5th Ed., **2004**.

² Hall, D. G., *Boronic Acids: Preparation, Aplications in Organic Synthesis and Medicine.* Wiley-VHC: Weinheim, **2005**.

³ Miyaura, N.; Suzuki, A. *Chem. Rev.* **1995**, *95*, 2457-2483.
⁴ Mun, S.; Lee, J.; Yun, J. *Org. Lett.* **2006**, *8*, 4887-4889.

14th Brazilian Meeting on Organic Synthesis – 14th BMOS – September 01-05, 2011-Brasilia, Brazil