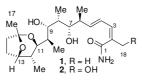


Synthesis of the C5-C17 fragment of saliniketal A

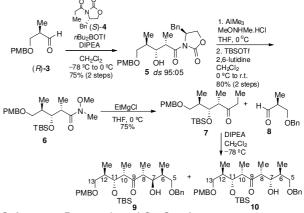

Carla Cristina Perez and Luiz Carlos Dias*

Chemistry Institute, State University of Campinas, UNICAMP, C.P. 6154, Campinas, SP, (Brazil) *e-mail: ldias@iqm.unicamp.br

Keywords: saliniketal, polyketides, ornithine decarboxylase.

INTRODUCTION

The marine-derived saliniketals A (1) and B (2) were isolated from the marine actinomycete *Salinispora arenicola* by Fenical and co-workers.^{1a} Their structures were confirmed by total synthesis in 2007.^{1b} We wish to describe here our synthetic strategy for the synthesis of saliniketal A.



RESULTS AND DISCUSSION

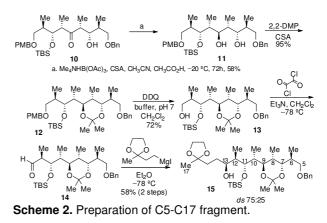

Our approach began with an asymmetric aldol addition of the boron enolate derived from oxazolidinone (S)-4 with aldehyde (R)-3 to give aldol adduct 5 (75%, ds 95:5). Transamidation followed by protection of the alcohol functionality provided Weinreb amide 6 (80%, 2 steps), which was treated with EtMgCl providing 7 (75%). Three different attempts of a double stereodifferentiating aldol reaction were performed using diferent Lewis acids (Table 1) and a selectivity inversion was observed when Ti(iPrO)Cl3 was employed. The relative stereochemistry was assigned by applying the method of Murata and co-workers's for conformational analysis of acyclic systems, based on proton-carbon coupling constants.²⁻⁴ These results allowed us to attribute the desired 6,7-anti and 7,8-syn configuration for compound 10 (Scheme 1). Stereoselective reduction of Bhydroxy ketone 10 delivered anti-diol 11 in 58% and 85:15 diastereoselectivity. yield The conversion of diol to the corresponding isopropylidene acetal according to the Rychnovsky methodology,5 confirmed the 1,3-syn relative stereochemistry. Removal of the PMB group and Swern oxidation provided aldehyde 14, which was treated with the corresponding Grignard reagent providing 15 in 58% yield for the two steps.

Table 1. Lewis acids used in aldol reactions between 7 and 8.

Lewis Ac.	Yield (2 steps)	dr (9:10)
TiCl ₄	52%	72:28
SnCl ₄	58%	83:17
Ti(<i>i</i> PrO)Cl₃	60%	15:85

Scheme 1. Preparation of C5-C13 fragment.

CONCLUSION

The synthesis of the C5-C17 fragment (**15**) of saliniketal was achieved in 11 steps and 6% overall yield.

ACKNOWLEDGEMENTS

We are grateful to FAPESP, CNPq, and CAPES.

REFERENCES

¹ (a) Willian, P.G.; Asolkar, R.N.; Kondratyuk, T.; Pezzuto, J.M.; Jensen, P.R.; Fenical, W. *J. Nat. Prod.* **2007**, *70*, 83-88. (b) Paterson, I.; Razzak. M.; Anderson, E.A. *Org. Lett.* **2008**, *10*, 3295-3298

² Matsomuri, N.; Kaneno, D.; Murata, M.; Nakamura, H.; Tachibama, K. *J. Org. Chem.* **1999**, *64*, 866-876.

³ The measurement of coupling constants ${}^{n}J_{CH}$ were made using HSQC-TOCSY-IPAP experiments in collaboration with Professor Cláudio Tormena at Unicamp.

⁴ Parella, T.; Belloc, J.; Sánchez-Ferrando, F.; Virgili, A. *Magn. Reson. Chem.* **1998**, *36*, 715 – 719.

⁵ Rychnovsky, S.D.; Skalitzky, D.J. *Tetrahedron Lett.* **1990**, *31*, 945

14th Brazilian Meeting on Organic Synthesis – 14th BMOS – September 01-05, 2011-Brasilia, Brazil