

Polycatenar mesogens derived from benzo[1,2-d:4,5d']bisthiazole.

E. W. Díaz*, M. L. Parra, M. R. Dahrouch, E.Y. Elgueta and J.M. Vergara.

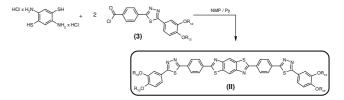
Facultad de Ciencias Químicas, Departamento de Química Orgánica, Universidad de Concepción, Casilla 160-C, Concepción, Chile.

*endiaz@udec.cl

Keywords: liquid crystal, polycatenar, benzobisthiazole.

INTRODUCTION

Polycatenar liquid crystals have been known since 1985. They consist of a long rod-like rigid core ending in two half-disc moieties. The molecular architecture of such hybrid mesogens, situated between rod-like and disc-like mesogenic compounds, allows a rich polymesomorphism¹.


On the other hand, efficient light-emitting diode (LED) materials derived from heterocyclic benzobisazoles have been studied. An efficient π -stacking and strong intermolecular interaction were attributed to some novel physicochemical and mechanical properties observed in such materials². In this work, new mesogenic polycatenar have been prepared, with the incorporation of benzo bisthiazole.

RESULTS AND DISCUSSION

The synthesis of tetracatenar and hexacatenar mesogen with 2,6-bisphenylbenzo[1,2-d:4,5d']bisthiazole as rigid central unit has been described in the scheme 1 and 2. The hexacatenar mesogen (I) has been obtained from esterification reaction between 2,6-bis(hidroxyphenyl)benzo[1,2-d:4,5d']bisthiazole (1) and 3,4,5-trisdecyloxybenzoyl chloride (2) in presence of DMAP which behaves as catalyst and base agent (scheme 1).

Scheme 1. Synthesis of bisthiazole mesogen (I) with ester group, [transition temperatures (9 C): Cr 90 Col_x 132 I].

In the case of tetracatenar mesogen (II), the preparation is based on coupling reaction between 2,5-diamino-1,4-benzenedithiol dihydrochloride and 4-[5-(3,4-bis(decyloxy)phenyl)-1,3,4-thiadiazol-2-yl]benzoyl chloride (3), using pyridine as base agent (scheme 2).

Scheme 2. Synthesis of bisthiazole mesogen (II) with thiadiazole unit, [transition temperatures ($^{\circ}$ C): Cr 76 Col_x 97 II.

These products have shown thermotropic liquid crystalline properties with enantiotropic behavior. The columnar mesophase has been determined by textural observations using thermal microscopy under a polarizing optical microscope (Figure 1).

Figure 1. Optical micrographs (magnification: x20) **I)** Columnar phase at 100 $^{\circ}$ C of hexacatenar mesogen with function ester, and **II)** Columnar phase at 92 $^{\circ}$ C of tetracatenar mesogen with thiadiazole unit.

The columnar phase in these materials is explained by some self-assembled molecules generating disc-shaped aggregates. The self organization of these aggregates exhibit columnar structure due to π -stacking effect between rigid central units of 2,6-bisphenylbenzo[1,2-d:4,5d']bisthiazole.

CONCLUSION

The molecular design proposed and obtained through the synthesis described in this work has been a success, allowing to reach new polycatenar liquid crystals based on 2,6-bisphenylbenzo[1,2-d:4,5d']bisthiazole unit.

ACKNOWLEDGEMENTS

This work was supported by FONDECYT (Grant 1100140), "Dirección de Investigación" of the University of Concepción and CONICYT (postgraduate scholarship)

REFERENCES

¹ Malthe te J., Levelut A. M., Nguyen H. T., *J Phys Lett (Paris)*. **1985**, 46, 875.

² Nguyen H. T, Destrade C, Malthe te J. Adv Mater 1997, 9, 375.