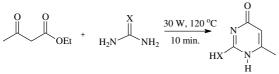


Synthesis of 9-substituted 9-deazaguanine derivatives

Alexandre F. Barbosa, Arlene G. Corrêa*

Departamento de Química, Universidade Federal de São Carlos, 13565-905, São Carlos, SP - Brazil * Corresponding author. Tel: +16 33518281, e-mail: agcorrea@ufscar.br

Keywords: green chemistry, microwaves, deazaguanines, purine nucleoside phosphorylase

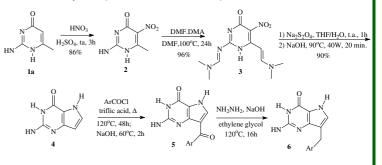

INTRODUCTION

Various derivatives of 9-substituted 9-deazaguanine and 9-deazahypoxanthine have been described as potent competitive inhibitors of purine nucleoside phosphorylase (PNP).^{1,2} In this work, we describe a greener method for the synthesis of 9deazaguanines employing microwaves (MW).

RESULTS AND DISCUSSION

Our synthetic strategy was based on the work described by Shih et al.³ (Scheme 1). Several procedures are described for the preparation of the starting material, 6-methyl-4-pyrimidinone derivatives **1**, using guanidine or thiourea, ethyl acetoacetate, with or without base, under reflux of ethanol or methanol for several hours.^{4,5} Schmink et al.⁶ described recently a MW assisted synthesis of 6-methylthiouracil (**1b**) using KOH in ethanol.

We tested the reaction for the preparation of **1a-c** with and without base, solvent, under conventional heating and also under MW. The best results were obtained without base and solvent under MW irradiation in 65 and 56% yield, for **1a** and **1b**, respectively (Scheme 1). 6-Methyluracil (**1c**) has not been obtained in any experimental condition we have tested.



 1a, X=NH
 1b, X=S
 1c, X=O

 Scheme 1. Synthesis of 6-methyl-4-pyrimidinones.

The synthesis of 9-deazaguanines was then performed, by nitration of **1a**, followed by alkylation using *N*,*N*-dimethylformamide dimethyl acetal furnishing **3**. Reductive cyclization followed by microwave irradiation furnished 9-deazaguanine **4** in 90% yield. Under reflux for 2 h, **4** was obtained in only 61% yield. Friedel–Crafts aroylation using trifluoromethane sulfonic acid as catalyst, followed by the Wolff–Kishner reaction leads to the 9-

substituted 9-deazaguanines **6** in low to moderate overall yield (Scheme 2, Table 1).³

Scheme 1. Synthesis of 9-deazaguanines.

T . I. I	VC . I.I.		·		
I able 1:	rielas	obtained	in the	synthesis	01 b

Benzoyl Chloride	5, Yield (%)	6, Yield (%)
4-chloro	68	58
4-bromo	65	55
3-fluor	71	14
3-chloro	73	-
3,4-dichloro	75	-
3-nitro	68	-
3,5-dichloro	62	-
-	53	-
4-fluor	64	16
2,4,6-trichloro	52	-
2-chloro	61	11
4-iodo	56	15

CONCLUSION

New 9-substituted 9-deazaguanines were obtained employing MW in two steps of the synthetic route. These compounds are being evaluated against human and *S. mansoni* PNP enzymes.

ACKNOWLEDGEMENTS

FAPESP, CNPq and CAPES.

REFERENCES

- ¹Balakrishnan, K.; et al. *Blood* **2006**, *108*, 2392.
- ² Castilho, M.S.; et al. *Bioorg. Med. Chem.* **2010**, *18*, 1421.
- ³ Shih, H.; et al. *Chem. Pharm. Bull*, **2002**, *50*, 364-367.
- ⁴ Foster, H. M.; Snyder, H. R. *Org. Synth.*, Coll. Vol. **4**, 638, 1963.
- ⁵ Zhou, J.P. et al. *Chin. Chem. Lett.* **2008**, *19*, 669.
- ⁶ Schmink, J. R. et al. *Org. Proc. Res. Dev.* **2010**, *14*, 205.