

Use of new supported palladium heterogeneous catalysts in the production of key intermediates for the synthesis of "sartans"via the Suzuki reaction

Gizelda O. Duque Estrada¹ (PG), Paola F. Couto¹ (IC), Joaquim F. M. da Silva¹ (PQ), Leandro S. M. Miranda² (PQ), Lúcio C. Filho² (PQ), Christian G. Alonso³ (PQ), Rodrigo Octavio M. A. de Souza¹ (PQ)*

¹Instituto de Química, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos 149, CT Bloco A, Cidade Universitária, Rio de Janeiro, CEP 21941-909, Brasil. ²Instituto Federal de Educação, Ciência e Tecnologia, Campus Rio de Janeiro, Rua Senador Furtado, 121, Maracanã, Rio de Janeiro, CEP 20270-021, Brasil. ³Departamento de Engenharia Química, Universidade Estadual de Maringá, Avenida Colombo 5790, Bloco D90, Jardim Universitário, Maringá, Paraná, CEP 87020-900, Brasil. *rodrigosouza@ig.ufri.br

Keywords: Suzuki reaction; palladium catalyst; sartans

INTRODUCTION

Angiotensin II receptor antagonists are widely used in the treatment of hypertension, heart diseases, heart attack, and bladder diseases (e.g. Losartan-Cozaar[®], <u>1</u>).¹

The "sartans" contain characteristic *ortho* functionalized biaryl moiety in their structure that can be synthetized by palladium mediated cross-coupling.¹ In this context, we use new supported palladium heterogeneous catalysts for the production biaryl intermediate via Suzuki reactions.

RESULTS AND DISCUSSION

In the inicial studies, the supported palladium heterogeneous catalysts Pd-Ru/CeO₂-TiO₂; Pd-Ru/Nb₂O₅-TiO₂; Pd-Ru/La₂O₃-TiO₂; Pd-Ru/La₂O₃-Nb₂O₅; Pd-Ru/TiO₂; Pd-Ru/Nb₂O₅; Pd-Ru/La₂O₃; Pd-Cu/ γ Al₂O₃, and Pd/Nb₂O₅ previously characterized by TG/DTA, BET, XRD and XRF were tested for the Suzuki reaction between 2bromobenzonitrile $(\underline{2})$ and phenylboronic acid $(\underline{3})$ with K₂CO₃ as base in DMF at 120°C for 24 h on the silica carbide plate (Scheme 1). The catalyst supported on niobium(V) oxide presents the best performance with excellent conversion (>99%) and selectivity (>99%) to the desired cross-coupling product, 4).

Scheme 1. Suzuki reaction between 2-bromobenzonitrile $(\underline{2})$ and phenylboronic acid $(\underline{3})$

In a second set of experiments, we decided to evaluate at the same reaction profile under microwave irradiation conditions and results are summarized in the Table 1. **Table 1.** Influence of solvent, reaction time and catalyst

 load under microwave irradiation on the Suzuki reaction.

Entry	Solvent	Reaction Time	Catalyst Load	Conv. ^(a)	Select. ^(a)
1	DMF	10	10%	>99%	73%
2	DMF	20	10%	>99%	78%
3	DMF	30	10%	>99%	88%
4	EtOH/H₂O 50%	30	10%	>99%	>99%
5	EtOH/H₂O 50%	30	5%	>99%	>99%
6	EtOH/H ₂ O 50%	30	1%	>99%	>99% (>99%) ^b
7	EtOH/H ₂ O 50%	30	0.5%	>99%	88%

General conditions: 2-bromobenzonitrile (1 mmol); phenylboronic (1,2 mmol); K_2CO_3 (1,2 mmol); Pd/Nb₂O₅; Solvent (2 mL) ^aConversion and selectivity to the cross-coupling product <u>4</u> was determined by GC-MS. ^bIsolated yield determined by NMR ¹H and NMR ¹³C

As can be seem, the reaction assisted by microwave in EtOH/H₂O 50% mixture in only 30 min afforded higher selectivity for cross coupling product, <u>4</u> (Table 1; Entries 4-6).

CONCLUSION

The use of palladium supported in niobium(V) oxide presented high efficiency in terms of yield and selectivity in the synthesis of important biaryl building block via Suzuki reaction.

ACKNOWLEDGEMENTS

CNPq, CAPES, FAPERJ, FINEP, FUJB, Anton Paar, PGQu/UFRJ

REFERENCES

¹Veverka, M.; Putala, M.; Brath, H.; Zuppancic, S. US Patent 7,868,180 Jan 11, **2011**.

14th Brazilian Meeting on Organic Synthesis – 14th BMOS – September 01-05, 2011-Brasilia, Brazil