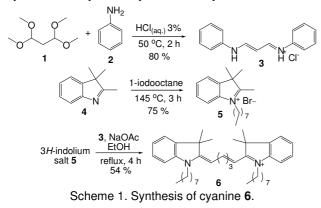


Synthesis of cyanine dyes: potential fluorescent probes for biological applications

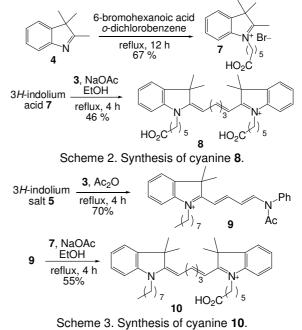
Diego S. Pisoni,^{*} Marluza P. de Abreu, Cesar L. Petzhold, Fabiano S. Rodembusch, Leandra F. Campo

Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, CEP 91501-970, Porto Alegre, RS, Brazil

*Corresponding author: diego_qui@yahoo.com.br


Keywords: cyanine dyes, fluorescent probes, polymethine

INTRODUCTION


Cyanine dyes are important organic compounds due to the strong absorption in the visible region, interesting broad wavelength tenability and fluorescence emission in red and infrared regions.¹ These features allow the use of these dyes as photographic sensitizers, nonlinear optical materials, fluorescent probes for biological and analytical applications.² This work describes the synthesis of cyanine dyes prepared by the condensation of heteroaromatic compounds with a polymethine spacer derived from aniline.

RESULTS AND DISCUSSION

Symmetrical cyanine **6** was synthesized as shown in Scheme 1. The acid-catalysed condensation of 1,1,3,3-tetramethoxypropane (1) with aniline (2) afforded the polymethine precursor **3**. Subsequent alkylation of 2,3,3-trimethylindolenine (4) with excess of 1-iodooctane led to the ammonium salt **5** in 75% yield. Next, the condensation reaction of polymethine **3** (1.0 equiv.) with 3*H*-indolium salt **5** (2.0 equiv.), under reflux in EtOH in the presence of AcONa, afforded the symmetrical cyanine dye **6** in 54% yield.

Cyanine **8** was obtained in 46% yield by condensation of polymethine **3** with 3*H*-indoliumacid **7**, prepared by alkylation of **4** using 6bromohexanoic acid in *o*-dichlorobenzene (Scheme 2). Unsymmetrical dye **10** was synthesized according to Scheme 3. Condensation of 3 (1.0 equiv.) with 5 (1.0 equiv.), in the presence of Ac₂O as solvent, afforded the acetanilinobutadienyl salt 9 in 70% yield. Subsequent reaction of activated indolium 9 with 7, under reflux in EtOH in the presence of AcONa, led to the dye 10 in 55% yield.

The synthesized dyes exhibit in solution absorption and fluorescence emission in the red region (660 - 670 nm).

CONCLUSION

The dyes **6**, **8** and **10** were synthesized by the condensation of heterocyclic ammonium salts with polymethine precursor **3**. These compounds exhibit interesting photophysical properties for application in fluorescence microscopy and fluorescence imaging.

ACKNOWLEDGEMENTS

INDI-Saúde and CNPq for finantial support.

REFERENCES

1 Mojych, M. et al. Top. Heterocycl. Chem. 2008, 14, 1. 2 Chipon, B. et al. Tetrahedron Lett. 2006, 47, 8279. 14th Brazilian Meeting on Organic Synthesis – 14th BMOS – September 01-05, 2011-Brasilia, Brazil