

Synthesis and Docking of new (2-(2,5-dimethoxyphenyl)-1H-benzo[d]imidazol-1-yl)(aryl)methanone derivatives designed as novel cannabinoid CB₁ receptor antagonists.

Espinosa-Bustos, C *.; Lagos, C. F.; Romero-Parra, J.; Mella-Raipán, J.; Pessoa-Mahana, H.; Recabarren-Gajardo, G.; Pessoa-Mahana, C. D.

Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Casilla 306, Santiago 22, Chile.

ccespino@uc.cl

Keywords: benzimidazoles, cannabinoids, heterocycles

INTRODUCTION

The endocannabinoid system has been known to mediate a complex array of biological effects. These effects are regulated through at least two distinct G-protein coupled receptors, the CB_1 and CB_2 receptor 1 . Specifically, the antagonists of the CB_1 receptor possess very useful applications, particularly in the obesity treatment such as Rimonabant 2 . In this work we inform the synthesis and docking studies of several $(2-(2,5-\text{dimethoxyphenyl})-1\,H-\text{benzo}[d]\text{imidazol-1-yl})(\text{aryl})$ methanone as potential CB_1 receptor antagonists.

RESULTS AND DISCUSSION

The first step in the synthetic sequence displayed in figure 1 is a condensation between *o*-phenylenediamines and 2,5-dimethoxybenzaldehyde ³. This reaction is carry out using ethanol as solvent under reflux conditions during 24 h. The ¹H-NMR spectral data analysis for the benzimidazole series shows a signal in the range of 12-13 ppm for the NH group.

R1	R2	R3	Yield (%)	R1	R2	R3	Yield (%)
Н	Н	1-naphtyl	38	CH₃	CH₃	1-naphtyl	33
Н	Н	2-naphtyl	27	CH₃	CH₃	2-naphtyl	18
Н	Н	4-biphenyl	31	CH3	CH3	4-biphenyl	27
Н	Н	4- nitrophenyl	67	CH₃	CH₃	4- nitrophenyl	72
Н	Н	3- nitrophenyl	56	CH₃	CH₃	3- nitrophenyl	65
Н	Н	4- cianophenyl	62	CH₃	CH₃	4- cianophenyl	48
Н	Н	3- cianophenyl	58	CH₃	CH₃	3- cianophenyl	51

Table1. Derivatives synthesized and their respective yields

Reagents and conditions: a) 2,5-dimethoxybenzaldehyde, ethanol, reflux, 24 h. b) acyl chlorides, THF, Na₂CO₃, 6 h.

Figure 1. Synthetic route for the target series

Finally, the 2-(2,5-dimethoxyphenyl)-1H-benzimidazoles derivatives were acylated with various commercial acyl chlorides using THF as solvent and base in anhydrous atmosphere. The docking studies suggest, especially for derivatives $\bf A$ R₁, R₂=H; R₃=1-naphtyl and $\bf B$ R₁, R₂=H; R₃=2-naphtyl, a favorable binding ΔG , compared with the potent selective CB₁ antagonist LY-320135 (Table 2).

Compound	Binding ΔG		
Α	-18,34 kcal/mol		
В	-18,23 kcal/mol		
LY-320135	-13 56 kcal/mol		

Table 2. ΔG binding values.

CONCLUSION

We synthesized a series of 2-(2,5-dimethoxyphenyl)-1H-benzo[d]imidazol-1-yl)(aryl) methanone. According to docking studies, two of them A and B, would be promising CB_1 cannabinoid receptor antagonists. Biological assays are currently in progress

ACKNOWLEDGEMENTS

The authors are grateful to FONDECYT (grant no. 1100493). Espinosa-Bustos, C. thanks CONICYT for doctoral support.

REFERENCES

M. P. Verbist, M. A. De Cleyn, M. Surkyn, E. Fraiponts, J. Aerssens, M. A. Nijsena H. J. M. Gijsena. *Bioorg. Med. Chem. Lett.* **2008**, 18, 2574.
 G. G. Muccioli, D. Martin, G. K. E. Scriba, W. Poppitz, J. H. Poupaert, J. Wouters. D. M. Lambert, *J. Med. Chem.* **2005**, 48, 2509.

J. Wouters, D. M. Lambert. *J. Med. Chem.* **2005**, 48, 2509.

³ D. Pessoa-Mahana, A. Núñez, C. Espinosa, J. Mella-Raipán, H. Pessoa-Mahana. *J. Braz. Chem. Soc.* **2010** 21, 63.