



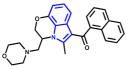


# Synthesis and docking of new benzimidazole derivates designed as novel and potent CB<sub>1</sub> cannabinoid ligands.

Romero-Parra J.\*, Lagos C.F.;Espinosa-Bustos C., Mella-Raipán J; Pessoa-Mahana., Recabarren G., Pessoa-Mahana C. D.

<sup>1</sup>Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile Vicuña Mackenna 4860, Casilla 306, Santiago 22, Chile <u>jhromero@uc.cl</u>

Keywords: Cannabinoids. Benzimidazole. Heterocycles.


## INTRODUCTION

Despite the fact that medicinal and cognitive effects of Marijuana (*Cannabis sativa*) have been known for thousands of years, only recent studies provided convincing information on the biological mediation of it effects. Currently, two subtypes of cannabinoid receptor (namely  $CB_1$  and  $CB_2$ ) have been cloned and pharmacologically characterized. Both  $CB_1$  and  $CB_2$  belong to the G protein-coupled receptor family (GPCRs)<sup>1</sup>.

Knowledge of the characteristics of CB<sub>1</sub> binding site has notably increased the interest on the synthesis of new small molecules as potential ligands, significantly less lipophilic and more potent than  $\Delta$ 9-THC<sup>2</sup>. Our interest in developing new cannabinoid ligands is based on the therapeutic opportunities associated to these chemical entities.

### **RESULTS AND DISCUSSION**

The aim of this study is to obtain new cannabinoids ligands, trying to emulate the powerful indole cannabinoid agonist WIN 55,212-2 (see Figure 1) by replacing the indole by the isostere ring benzimidazole.



**Figure 1:** Cannabinoid agonist WIN 55,212-2. Blue bonds represent the heterocycle frame to be replaced.

Benzoimidazole series have been synthesized by oxidative condensation of 1,2-phenylenediamine with commercially available aldehydes. Substitution reactions in the N1 of the benzimidazole were carried out by using acid halides. Figure 2 shows the reaction conditions for the obtaining of heterocycle framework and the substitution of the N1 of the benzimidazole.

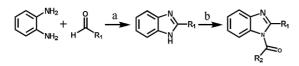



Figure 2: Synthetic secuence to the obtaining of target benzimidazoles. a) Ethanol, reflux. b) acid halides, triethylamine, THF, 6h.

To date twelve benzimidazole derivates have been synthesized, which possess a short chain aliphatic portion in position 2 and an aromatic substitution on the N1. This last substitution will give us valuable information about the contribution of the naphthalene moiety in WIN 55,212-2 to the total energy binding. Therefore, we included this moiety in six compounds meanwhile the other six molecules bear a 4-methoxyphenyl in this position. The series was subjected to experiments and then compared the results with WIN 55,212-2 binding  $\Delta G$ , which value is - 8.50 kcal/mol. In silico study suggest that all molecules have a similar ability compaired with WIN 55,212-2 to interact into the binding site of the receptor CB<sub>1</sub>. Table shows synthesized 1 benzimidazole analogues and their calculated binding  $\Delta G$ .

| R <sub>1</sub>  | R <sub>2</sub>   | Yield (%) | Binding ∆G<br>(kcal/mol) |
|-----------------|------------------|-----------|--------------------------|
| 1-Naphtyl       | Methyl           | 78        | -6.55                    |
| 1-Naphtyl       | Propyl           | 66        | -5.54                    |
| 1-Naphtyl       | Butyl            | 51        | -5.66                    |
| 1-Naphtyl       | Isospropyl       | 84        | -6.31                    |
| 1-Naphtyl       | 2- Methyl propyl | 56        | -6.71                    |
| 1-Naphtyl       | Cyclopenthyl     | 81        | -6.33                    |
| 4-Methoxyphenyl | Methyl           | 33        | -5.81                    |
| 4-Methoxyphenyl | Propyl           | 24        | -5.65                    |
| 4-Methoxyphenyl | Butyl            | 21        | -5.67                    |
| 4-Methoxyphenyl | Isospropyl       | 42        | -5.07                    |
| 4-Methoxyphenyl | 2- Methyl propyl | 50        | -6.40                    |
| 4-Methoxyphenyl | Cyclopenthyl     | 28        | -8.96                    |

**Table 1:**  $\Delta G$  Binding values.

Rev. 2006. 58. 389-462.

### CONCLUSION

The synthesis of a series of benzimidazole derivates structurally referible to WIN 55,212-2 have been afforded. The in silico docking studies predicts a good binding affinity like the agonist indole.

## ACKNOWLEDGEMENTS

The authors are grateful to FONDECYT (grant no. 1100493) and CONICYT for doctoral support.

#### REFERENCES

B. Bosier, Giulio G. Muccioli, E.Hermans, D. M. Lambert. *Biochemical Pharmacology* **2010**, 80, 1–12.
Pál Pacher, Sándor Bátkai, and George Kunos. Rev Article. *Pharmacol*

14th Brazilian Meeting on Organic Synthesis – 14th BMOS – September 01-05, 2011-Brasilia, Brazil