

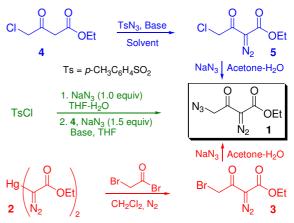
Milder Preparation of a γ -Azido- α -diazo- β -keto Ester by Consecutive Introduction of Azido and Diazo Groups

Luiz Gustavo Dutra (PG),* Marcus Mandolesi Sá (PQ)

Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis/SC, 88040-900, Brasil

*Corresponding author. Tel. +55-48-37219967; Fax: +55-48-37216850 *e-mail: dutralg@yahoo.com.br

Keywords: Azido esters, Diazo carbonyl, Diazo transfer


INTRODUCTION

Diazo compounds have been used extensively as precursors of metal carbene intermediates, which can subsequently undergo diverse transformations such as X–H insertion (X = C, O, S, N), and cyclopropanation.¹ Organic azides are valuable intermediates for the synthesis of many nitrogencontaining molecules,² including heterocycles and natural products.³ Although the isoelectronic azido and diazo functionalities are synthetically useful, the chemical behavior of compounds decorated with both azido and diazo groups remains unexplored.⁴

Some years ago, we reported⁵ the synthesis of γ azido- α -diazo- β -keto esters and the chemoselective transformation of their multiple functional groups that ultimately gave more elaborated structures.⁶ The key azido diazo building block 1 was originally prepared in 2 steps by coupling the diazomercurial 2 with bromoacetyl bromide under anhydrous conditions followed by treating the bromo diazo intermediate 3 with azide anion⁵ (Scheme 1, Red route). Although this methodology furnished the expected product 1 in high yields and mild conditions, the diazomercurial 2 is not commercial and harmful to the health and environment. Herein, we report our initial achievements through a more simple and safe methodology for the synthesis of 1 starting from the commercially available ethyl 4-chloroacetoacetate (4) (Scheme 1, Blue route).

RESULTS AND DISCUSSION

The γ -chloro- α -diazo- β -keto ester **5** was prepared from **4** by a diazo transfer reaction using tosyl azide (TsN₃) in basic medium. A variety of conditions was studied, including different combinations of base (triethylamine [TEA], *N*-methylmorpholine, K₂CO₃) and solvent (THF, acetone, acetonitrile). While the use of TEA in THF led to a clean formation of **5**, the recovery mass was consistently low, possibly due to an extensive loss of product during the aqueous work-up. More promising results were achieved with the bulkier base *N*,*N*-diisopropylethylamine (DIPEA) in THF for 24 h followed by quenching the reaction with HCl before the basic aqueous work-up, giving the chloro diazo ester **5** in 50-70% yield.

Scheme 1. Preparation of azido diazo ester 1.

The subsequent preparation of azido diazo ester **1** from **5** by chlorine displacement with azide in aqueous acetone for 24 h gave the expected product in high yield. Diazo compounds **1** and **5** were characterized by IR and ¹H NMR, and their spectroscopic data were in agreement with those already published.⁵

Finally, preliminary results indicated that azido diazo ester **1** can be prepared in one pot from **4** and tosyl chloride, by first generating TsN_3 *in situ* followed by consecutive diazo transfer and displacement with azide (Scheme 1, Green route).

CONCLUSION

Preparation of azido diazo ester **1** from **4** by a diazo transfer reaction and subsequent nucleophilic displacement is a promising methodology. This simple protocol can be adapted to a one-pot process without isolation of any intermediates. Further studies are in progress to optimize the reaction conditions.

ACKNOWLEDGEMENTS

UFSC, CAPES, CNPq, FAPESC

REFERENCES

- Zhang, Z.; Wang, J. *Tetrahedron* **2008**, *64*, 6577.
- ² Bräse, S.; Gil, C.; Knepper, K.; Zimmermann, V. Angew. Chem. Int. Ed. 2005, 44, 5188.
- ³ Mazal, C.; Jonas, J.; Zak, Z. *Tetrahedron* **2002**, *58*, 2729.
- ⁴ Sá, M. M.; Silveira, G. P.; Bortoluzzi, A. J.; Padwa, A. *Tetrahedron* **2003**, *59*, 5441 and references cited herein.
- ⁵ Padwa, A.; Sá, M. M.; Weingarten, M. D. *Tetrahedron* **1997**, *53*, 2371.
 ⁶ Padwa, A.; Sá, M. M. *J. Braz. Chem. Soc.* **1999**, *10*, 231.

14th Brazilian Meeting on Organic Synthesis – 14th BMOS – September 01-05, 2011-Brasilia, Brazil