

Photosensitized Water Oxidation Using a Bio-Inspired Manganese Catalyst

<u>Erik A. Karlsson</u>,¹ Bao-Lin Lee, ¹ Torbjörn Åkermark,² Eric V. Johnston,¹ Markus D. Kärkäs,¹ Junliang Sun,² Örjan Hansson,³ Jan-E. Bäckvall, ¹ Björn Åkermark^{*1}

¹Dept. of Organic Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden

²Dept. of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden ³Dept. of Chemistry, University of Gothenburg, P.O Box 462, SE-405 30 Gothenburg, Sweden

*bjorn.akermark@organ.su.se

Keywords: water oxidation, manganese catalysis, artificial photosynthesis

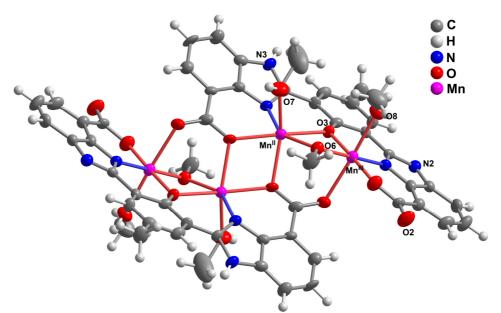
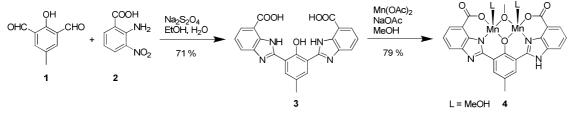



Figure 1. X-ray crystal structure of complex 4 at 50 % probability level.

INTRODUCTION

Water oxidation catalysts are essential in bioinspired systems for solar-driven water splitting.¹ Several ruthenium catalysts are known,² but so far no manganese-based catalysts have been reported.

RESULTS AND DISCUSSION

Complex 4, prepared in a simple two-step sequence, has a tetranuclear structure, resembling the OEC in photosystem II. Treatment of 4 with $\text{Ru}(\text{bpy})_3^{3^+}$ as oxidant led to evolution of oxygen with a TON of 25. Furthermore, employing visible light together with $\text{Ru}(\text{bpy})_2(\text{deeb})^{2^+}$ as photosensitizer and $\text{S}_2\text{O}_8^{2^-}$ as electron acceptor, a TON of 4 was achieved.

This is, to the best of our knowledge, the first homogeneous manganese complex to catalyze water oxidation using a one-electron oxidant, and also using visible light and a photosensitizer.

CONCLUSION

ACKNOWLEDGEMENTS

We thank the K&A Wallenberg Foundation and the Swedish Energy Authority for financial support.

REFERENCES

¹Lewis, N. S.; Nocera, D. G. *Proc. Natl. Acad. Sci. U. S. A.* **2006**, *103*, 15729–15735.

²Sala, X.; Romero, I.; Rodríguez, M.; Escriche, L.; Llobet, A. Angew. Chem., Int. Ed. **2009**, *48*, 2842–2852.

14th Brazilian Meeting on Organic Synthesis – 14th BMOS – September 01-05, 2011-Brasilia, Brazil