

Fluoroalcohols: Efficient Solvents for the lodine(III)-Promoted Oxidative Rearrangement of 1,2-Dihydronaphthalenes

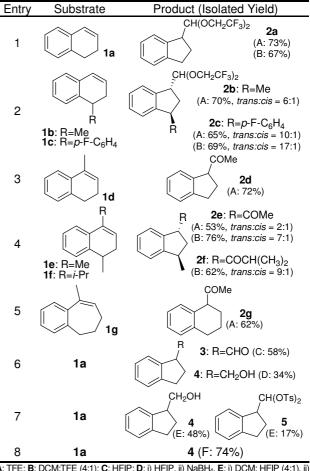
<u>Eloisa E. Ishikawa</u>[†], André Fogaça[†], Andréa T. Faccio[†], Vânia M. T. Carneiro[†], Aline Utaka[†], Iris R. M. Tébéka[†], Marcin Bielawski^{†‡}, Berit Olofsson[‡], Luiz F. Silva, Jr.[†]*

[†] Instituto de Química, USP, CP 26077, CEP 05513-970 São Paulo SP, Brazil, [‡] Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden *luizfsjr@iq.usp.br

Keywords: Fluoroalcohols, Hypervalent lodine, Oxidative Rearrangement.

INTRODUCTION

Hypervalent iodine reagents have a key role in chemical synthesis.¹ Since the first report,² CF₃CH₂OH (TFE) and (CF₃)₂CHOH (HFIP) have been used as solvent in reactions with hypervalent iodine compounds. However, TFE and HFIP have not been used in the rearrangement of alkenes.¹ We reported the ring contraction of 1,2-dihydronaphthalenes in MeOH or in MeCN mediated by PhI(OH)OTs (HTIB).³ Herein we describe fluoroalcohols as a great alternative for the oxidative rearrangement of alkenes mediated by HTIB. Some of the results in this work were already presented,⁴ and they are shown here for comparison.


RESULTS AND DISCUSSION

The reactions of the 1,2-dihydronaphthalenes 1a, 1b and 1c with HTIB in TFE led to the desired products in higher yields than in MeOH³ (entries 1 and 2, table 1). The oxidation of trisubstituted alkenes **1d** to **1g** with HTIB in TFE gave the corresponding indanes also in very good yields (entries 3, 4 and 5). Although TFE gives higher yields, the diastereoselectivity is lower.³ Thus, several conditions were tested to optimize the diastereoselectivity. Eventually, this goal was achieved using a 4:1 mixture of DCM:TFE as the solvent (entries 1 and 2). This media is also appropriate for trisubstituted alkenes (entry 4). Considering the very good results with TFE, we tested the even more polar solvent, HFIP. The oxidation of **1a** in HFIP was very fast and led to 3. but in lower vield than in TFE (entries 1 and 6). To avoid decomposition, 3 was reduced in situ, giving 4 after addition of NaBH₄, but in only 34% yield (entry 6). The alcohol 4 was isolated in better yield using DCM:HFIP (4:1), however together with 5 (entry 7). The treatment of 1a with HTIB and H₂O in DCM:HFIP (4:1), followed by NaBH₄, led only to 4 in 74% yield (entry 8).

CONCLUSION

Fluoroalcohols appeared to be an excellent medium for the iodine(III)-mediated ring contraction of 1,2-dihydronaphthalenes. This protocol represents a green alternative to the analogous reaction using toxic thallium(III) salts and will be useful in medicinal and synthetic organic chemistry to access functionalized indanes in an expeditious manner.

TABLE 1. Reaction of alkenes with HTIB in Fluoroalcohols^a.

 $^a \mbox{A: TFE; B: DCM:TFE (4:1); $C: HFIP; $D: i) HFIP, $ii] NaBH_4. $E: i) DCM: HFIP (4:1), $ii] NaBH_4; $F: i) DCM:HFIP (4:1), 22 equiv H_2O, $ii] NaBH_4. $E: i] DCM:HFIP (4:1), 22 equiv H_2O, $ii] NaBH_4. $E: i] DCM:HFIP (4:1), 22 equiv H_2O, $ii] NaBH_4. $E: i] DCM:HFIP (4:1), 22 equiv H_2O, $ii] NaBH_4. $E: i] DCM:HFIP (4:1), 22 equiv H_2O, $ii] NaBH_4. $E: i] DCM:HFIP (4:1), 22 equiv H_2O, $ii] NaBH_4. $E: i] DCM:HFIP (4:1), 22 equiv H_2O, $ii] NaBH_4. $E: i] DCM:HFIP (4:1), 22 equiv H_2O, $ii] NaBH_4. $E: i] DCM:HFIP (4:1), 22 equiv H_2O, $ii] NaBH_4. $E: i] DCM:HFIP (4:1), 22 equiv H_2O, $ii] NaBH_4. $E: i] DCM:HFIP (4:1), 22 equiv H_2O, $ii] NaBH_4. $E: i] DCM:HFIP (4:1), 22 equiv H_2O, $ii] NaBH_4. $E: i] DCM:HFIP (4:1), 22 equiv H_2O, $ii] NaBH_4. $E: i] DCM:HFIP (4:1), 22 equiv H_2O, $ii] NaBH_4. $E: i] DCM:HFIP (4:1), 22 equiv H_2O, $ii] NaBH_4. $E: i] DCM:HFIP (4:1), 22 equiv H_2O, $ii] NaBH_4. $E: i] DCM:HFIP (4:1), 22 equiv H_2O, $ii] NaBH_4. $E: i] DCM:HFIP (4:1), 22 equiv H_2O, $ii] NaBH_4. $E: i] DCM:HFIP (4:1), 22 equiv H_2O, $ii] NaBH_4. $E: i] DCM:HFIP (4:1), $ii] DCM:HFIP (4:1), $ii] NABH_4. $E: i] DCM:HFIP (4:1), $ii] DCM:HFIP (4:1), $ii]$

ACKNOWLEDGEMENTS

FAPESP, CNPq and CAPES for financial support.

REFERENCES

¹ Zhdankin, V. V.; Stang, P. J. *Chem. Rev.* **2008**, *108*, 5299. ² Yakura, T.; Tohma, H.; Kikuchi, K.; Tamura, Y. *Tetrahedron Lett.* **1989**, *30*, 1119. ³ Silva, L. F., Jr.; Siqueira, F. A.; Pedrozo, E. C.; Vieira, F. Y. M.; Doriguetto, A. C. *Org. Lett.* **2007**, *9*, 1433; ^{4a} Silva Jr., L. F.; Ishikawa, E. E.; Almeida Neto, A. F.; Carneiro, V. M. T.; *32thRASBQ* **2009**, QO-126. ^{4b} Faccio, A. T.; Carneiro, V. M. T.; Silva Jr., L. F.; *33thRASBQ* **2010**, ORG-019.

14th Brazilian Meeting on Organic Synthesis – 14th BMOS – September 01-05, 2011-Brasilia, Brazil