





# Quinonoid and phenazine compounds: synthesis of new antimycobacterial prototypes

Paula F. Carneiro,<sup>a</sup> Maria do Carmo F.R. Pinto,<sup>a</sup> Tatiane S. Coelho,<sup>b</sup> Antonio V. Pinto,<sup>a†</sup> Kelly C.G. Moura,<sup>a</sup> Pedro A. da Silva<sup>b</sup> and Eufrânio N. da Silva Júnior<sup>c</sup>\*

<sup>a</sup>Núcleo de Pesquisas em Produtos Naturais, UFRJ, RJ, Brazil; <sup>b</sup>Laboratório de Micobacterias, Departamento de Patologia, FURG, RS, Brazil; <sup>c</sup>Laboratório de Química Sintética e Heterocíclica, Instituto de Ciências Exatas, Departamento de Química, UFMG, MG, Brazil.

\*eufranio@ufmg.br

Keywords: guinone, tuberculosis and lapachol

# INTRODUCTION

Tuberculosis (TB) is a very aggressive disease caused by Mycobacterium tuberculosis (MT) and still represents nowadays a cause of globally death.

Recently, our research group has investigated the antitumor,  $^{\rm 2}$  trypanocidal  $^{\rm 3}$  and antimycobacterial  $^{\rm 4}$ activity of a large number of compounds obtained from lapachol (1). In this context, we present the synthesis and evaluation of phenazine compounds obtained from diverse guinones against MT pansusceptible and resistant strains.

# **RESULTS AND DISCUSSION**

Initially, from lapachol (1) the phenazine 2 was prepared. Lapachol (1) was reduced by catalytic reduction and the substances 3 and 4 were prepared and used to synthesize the phenazines 5 and 7 in good yields and the ether derivatives 6 and 8, respectively. Finally, the ether phenazine derivatives 9 and 10 were obtained from the substances 6 and 8, as yellow solids (Scheme 1).



Scheme 1. Obtention of phenazine compounds.

The minimum inhibitory concentrations (MICs) for the compounds were evaluated against MT H<sub>37</sub>Rv, MT rifampicin resistance (ATCC 35338) and MT isoniazid resistance (ATCC 35822). The toxicity of compounds toward a normal proliferating cell was investigated using the Alamar Blue assay. The compounds were classified by us according to their activity against MT as highly active (MIC  $\leq$  3 µg/mL), lowly active (3  $\mu$ g/mL < MIC < 100  $\mu$ g/mL and), or inactive (MIC > 100  $\mu$ g/mL).

Lapachol (1) and the compounds 2, 9 and 10, were considered inactive when MIC >100  $\mu$ g/mL for H<sub>37</sub>Rv, ATCC 35338 and ATCC 35822 strains and the substances 3 and 4 were lowly active.

With MIC value of 25, 12.5 and 25 µg/mL for MT H<sub>37</sub>Rv, MT rifampicin resistance and MT isoniazid resistance the reduced quinone 4 can be considered as an important prototype.

The substance 7 was highly active [MIC  $\leq$  3 μg/mL (9.75 μM)] against MT H<sub>37</sub>Rv. For ATCC 35822 strains the compound was less active with MIC value of 12.5 µg/mL and for ATCC 35822 strain was inactive. The substance 7 was not cytotoxic against normal cells ( $IC_{50} > 25 \mu g/mL$ ).

## CONCLUSION

All the new compounds were synthesized in good yields, by the proposed methodology. The substance **7** was highly active [MIC  $\leq$  3 µg/mL (9.75  $\mu$ M)] against MT H<sub>37</sub>Rv and emerge as interesting new lead compound in drug development for the treatment of TB.

### ACKNOWLEDGEMENTS

This research was supported by grants from the CNPq, FAPERJ, CAPES, UFRJ, FURG and UFMG.

#### REFERENCES

<sup>1</sup> Fears, R.; Kaufmann, S.; Meulen, V.; Zumla, A. Tuberculosis 2010, 90,

182.
<sup>2</sup> da Silva Júnior, E. N.; de Souza, M. C. B. V.; Pinto, A. V.; Pinto, M. C. F.
R.; Goulart, M. O. F.; Barros, F. W. A.; Pessoa, C.; Costa-Lotufo, L. V.;
Montenegro, R. C.; de Moraes, M. O.; Ferreira, V. F. *Bioorg. Med. Chem.* **2007**, *15*, 7035.

<sup>4</sup> Coelho T. A.; Silva, R. S. F.; Pinto, A. V.; Pinto, M. C. F. R. Scaini, C. J.; Moura, K. C. G.; da Silva, P. A. Tuberculosis 2010, 90, 293.

14th Brazilian Meeting on Organic Synthesis – 14th BMOS – September 01-05, 2011-Brasilia, Brazil