

Green synthesis of chalcone derivatives via Suzuki coupling

Lucas Campos Curcino Vieira*, Arlene G. Corrêa

Departamento de Química, Universidade Federal de São Carlos, 13565-905, São Carlos, SP - Brazil * Corresponding author. Tel: +16 33518215, e-mail: lucas_curcino@hotmail.com

Keywords: chalcones, Suzuki coupling, green chemistry

INTRODUCTION

An important tool used for the construction of C-C bond is the Suzuki reaction, which is based on the coupling between organoboron compounds and organic halides or triflates, catalyzed by palladium in the presence of base.¹ The reaction is usually volatile conducted solvents such as in tetrahydrofuran and dimethoxyethane in the presence of palladium complexes, which tend to be expensive and difficult to retrieve and recycle¹. Recently, Suzuki reaction has been performed using ionic liquids and polyethylene glycol (PEG) as alternative solvents. The advantages in the use of PEG include low cost, feasible to recycle, non-toxic and thermal stability, which allows the use of microwave irradiation. In this work, we describe the microwave-assisted synthesis of substituted chalcones (Figure 1) via Suzuki reaction using PEG-400 as solvent.

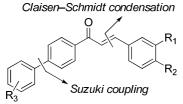
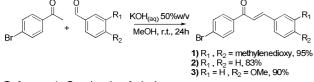
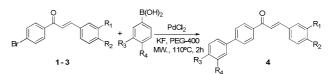



Figure 1. Derivative chalcones synthesized.

RESULTS AND DISCUSSION


The chalcones were synthesized via the Claisen-Schmidt condensation between substituted benzaldehydes and 4-bromoacetophenone (Scheme 1)³.

Scheme 1. Synthesis of chalcones.

The Suzuki coupling between compounds **1-3** with different boronic acids was performed using $PdCl_2$ as a catalyst, potassium fluoride such as base and the solvent used in this reaction was PEG-400. The compounds were obtained with moderate to good yields (Table 1).

Table 1. Synthesis of 4-substituted chalcones.

Chalcone	R ₃	R4	4, Yield (%)
1	Н	Н	75
1	Н	OMe	83
1	Н	Me	62
1	NO ₂	Н	70
1	F	OMe	91
1	Me	F	81
1	methylenedioxy		71
2	OMe	F	58
2	methylenedioxy		72
3	Н	OMe	57

CONCLUSION

Employing green conditions, as PEG as solvent and microwave heating, in the Suzuki coupling, we were able to prepare a series of new chalcone derivatives. Furthermore, the use of palladium chloride as catalyst and tolerance of a variety of functional groups is a good advantage for the general usefulness of this methodology.

ACKNOWLEDGEMENTS

FAPESP, CNPq and CAPES.

REFERENCES

 ¹ Myaura, N.; Suzuki, A. *Chem. Rev.*, **1995**, *95*, 2457.
² Namboodiri, V. V., Varma, R. S. *Green Chem.*, **2001**, *3*, 146.
³ Borchhardt, D. M.; Mascarello, A.; Chiaradia, L. D.; Nunes, R. J.; Oliva, G.; Yunes, Rosendo A.; Andricopulo, A. D. J. Braz. Chem. Soc. **2010**, *21*, 142.

14th Brazilian Meeting on Organic Synthesis – 14th BMOS – September 01-05, 2011-Brasilia, Brazil