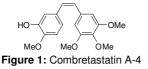


Synthesis of Combretastatin A-4 Analogs with Antitumoral Properties

Natércia M. M. Bezerra,^{*1} Gardênia C. G. Militão,² Terezinha G. da Silva,²

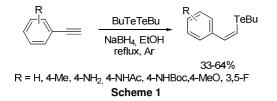

Paulo H. Menezes¹ and Roberta A. Oliveira¹

¹Departamento de Química Fundamental, CCEN, UFPE, 50670-901, Recife-PE ²Laboratório de Bioensaios para Pesquisa de Fármacos, Departamento de Antibióticos, UFPE, Recife-PE *naterciammb@yahoo.com.br

Keywords: combretastatin A-4, potassium aryltrifluoroborates, vinyl tellurides

INTRODUCTION

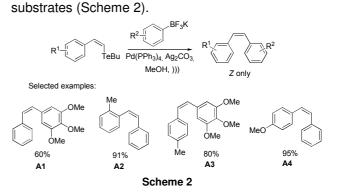
Combretastatin A-4 (CA-4) (Figure 1), a natural *Z*stilbene isolated from the South African willow *Combretum caffrum*, has been found to strongly inhibit the tubulin assembly by binding to the colchicine site and to be a cytotoxic agent against a wide variety of cell lines, including multidrugresistant lines.¹



The structural simplicity of CA-4 combined with its excellent antitumor and antivascular activities encouraged the scientific community to synthesize numerous analogs. From these structure–activity relationship (SAR) investigations, it has been established that the *cis*-orientation of the two aryl rings is crucial for the activity of CA-4 as well as the trimethoxyaryl unit, whereas, the hydroxyl group on the 3'-position is not essential.

Consequently, the synthesis of CA-4 analogs for further studies of their biological activities is of the great interest.

RESULTS AND DISCUSSION


The strategy to assembly the *Z*-double bond of CA-4 analogs was initially based on the use of the hydrotelluration reaction (Scheme 1).

The desired tellurides were obtained in good to moderate yields, with exclusive Z stereochemistry in all cases.

These compounds were then submitted to a Suzuki cross-coupling reaction with potassium aryltrifluoroborates² to give the desired stilbenes in

porates, vinyl tellurides good to moderate yields, being one feature of the method the tolerance of functional groups in both

In vitro antiproliferative activity of the synthesized stilbenes was determined against different cell lines. The A3 analog showed high citotoxicity against HL-60 cells (leukemia) with a IC_{50} of 0.2 µg/mL.

CONCLUSION

In summary, several functionalized stilbenes were synthesized in good yields. These compounds showed good antiproliferative activities agains tumor cell lines. The hydrotelluration reaction was used to assembly the Z double and further cross-coupling reaction with potassium aryltrifluoroborates gave the desired analogs in a short synthetic pathway.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge CNPq, CAPES, FACEPE and INCT-INAMI for the financial support.

REFERENCES

¹ Pettit, G. R.; Singh, S. G.; Boyd, M. R.; Hamel, E.; Pettit, R. K.; Schmidt, J. M.; Hogan, F. *J. Med. Chem.* **1995**, *38*,1666.
² Cella, R.; Stefani, H. A. *Tetrahedron* **2006**, *62*, 5656.

14th Brazilian Meeting on Organic Synthesis – 14th BMOS – September 01-05, 2011-Brasilia, Brazil