

Environmentally Friendly Homocoupling Reaction of Functionalized Potassium Aryltrifluoroborates Salts in Aqueous Media

Natércia M. M. Bezerra*, Everaldo F. Santos-Filho, Jokderlea C. Sousa, Paulo H. Menezes and Roberta A. Oliveira

^a Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife- PE, Brazil. *natercia.bezerra@ufpe.br

Keywords: potassium organotrifluoroborates, biaryl compounds, homocoupling reaction

INTRODUCTION

The biaryl bond is present in a wide range of natural products (Figure 1).

Figure 1: Biaryl natural products

In addition, the widespread application of biaryls as ligands and components in new materials make these compounds interesting synthetic targets.

Herein, we wish to describe an environmentally benign reaction for the synthesis of symmetrical biaryl compounds based on the palladium (II) catalyzed homocoupling of potassium aryl trifluoroborates under aerobic conditions.²

RESULTS AND DISCUSSION

Our initial studies focused on the development of an optimum set of reaction conditions. For this purpose, potassium 3-formylphenyl trifluoroborate (2a) was used as standard substrate. The results are depicted in Table 1

Table 1: Optimization of reaction conditions.

	BF ₃ K catalyst		СНО
	solvent K ₂ CO ₃ , 25°C	OHC	
	Catalyst (mol %)	Solvent	Yield (%) ^a
1	Pd(OAc) ₂ (5)	H ₂ O	82
2	PdCl ₂ (5)	H ₂ O	80
3	Pd(OAc) ₂ (15)	H ₂ O	84
4	=	H₂O	5
5	Pd(OAc) ₂ (5)	H ₂ O:THF (1:1)	85
6	Pd(OAc) ₂ (5)	THF	_b
7	$Pd(OAc)_2$ (5)	H₂O	50°

^a Isolated yield; ^b The product was not observed under the reaction conditions; ^c The reaction was performed without K_2CO_3 .

By extending the optimum set of conditions for the coupling reaction to other potassium aryl trifluoroborates, various biaryls were obtained in moderate to good yields (Table 2).

Table 2: Ar-Ar (2) prepared from the homocoupling reaction of $ArBF_3K$ (1) catalyzed by $Pd(OAc)_2$

	Pd(OAc) ₂		
	ArBF ₃ K K ₂ C	O ₃ , H ₂ O, 25°C, 24h	Ar—Ar 2
	ArBF₃K, 1	Ar-Ar, 2	Yield (%) ^a
1	3-CHO	онс сно	82
2	2-CHO	OHC	80
3	4-CHO	онс-{	80
4	3-CN	NC CN	75
5	3-NO ₂	O ₂ N NO ₂	70
6	3,5-(CF ₃) ₂	F ₃ C CF ₃	85
8	2,6-(Me) ₂		80 ^b
9	3-Th	S	75

^alsolated yield.

CONCLUSION

In summary, we have demonstrated that the potassium aryl trifluoroborates are useful substrates for the synthesis of biaryl compounds in good yields and under mild conditions. The green methodology is simple, uses water as solvent, low catalyst loadings, and is synthetically useful while it could be applied for the synthesis of more complex biaryl compounds.

ACKNOWLEDGEMENTS

CNPq, FACEPE CAPES, and INCT-INAMI

REFERENCES

14th Brazilian Meeting on Organic Synthesis – 14th BMOS – September 01-05, 2011-Brasilia, Brazil

¹ Kozlowski, M. C.; Morgan, B. J.; Linton, E. C. Chem. Soc. Rev. **2009**, *38*, 3193

² Oliveira, R. A. *Synlett* **2009**, 505-506