

CeCl₃·7H₂O as a catalyst for the synthesis of new indoles substituted at C-3

Claudio C. Silveira,* Samuel R. Mendes and Josemar R. Soares

Departamento de Química, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil. Fax: 55.55.3220 8754. *e-mail corresponding author. silveira@quimica.ufsm.br

Keywords: Indoles; Cerium (III) Chloride Heptahydrate; Substitution

INTRODUCTION

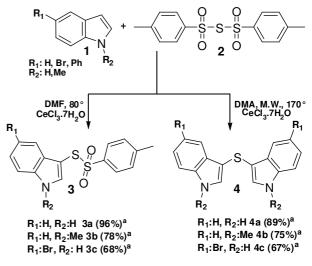
Facile access to indole and their derivatives is of general interest since they are widely present in bioactive metabolites of numerous compounds isolated from natural sources.¹ Arylthioindoles are an important class of compounds due to their activity towards the treatment of several diseases.²

On the other hand, cerium (III) chloride has emerged as a very useful Lewis acid imparting high regio- and chemoselectivity in various chemical transformations over the past few years. It is an inexpensive, nontoxic and water-tolerant catalyst and has been used in several different forms, alone as heptahydrate, anhydrous, and in combination with Nal.³

RESULTS AND DISCUSSION

In view of our interest in the development of new and efficient methodologies promoted by cerium (III) species,⁴ we decided to study the electrophilic substitution reaction of Indoles **1** with *p*-toluenesulfonothioate **2** catalyzed by CeCl₃·7H₂O. Indole **1** (R₁, R₂=H) and **2** were used as starting materials to establish the best conditions, Table 1. Careful analysis revealed that the use of DMF as solvent and CeCl₃·7H₂O (1:1 to indole) at 80° allows the synthesis of compounds **3**, scheme 1.

Table 1. Optimization of the reaction conditions tosynthesis of compounds 3.


Entry	Solvent	CeCl ₃ .7H ₂ O – Indole	Time (min) ^a	Yield (%) ^b
1	DMF	0,5:1	20	55
2	MeNO ₂	0,5:1	20	35
3	MeCN	0,5:1	20	25
4	Isopropanol	0,5:1	20	21
5	DMA	0,5:1	20	52
6	DMF	1:1	20	96
7	MeNO ₂	1:1	20	38
8	MeCN	1:1	20	26
9	Isopropanol	1:1	20	25
10	DMA	1:1	20	60

^a Reaction followed by TLC. ^b Isolated yields.

Adequate solvents and amount of catalyst for the synthesis of compounds 4 were also tested. The use of DMA as a solvent, $CeCl_3 \cdot 7H_2O$ (1:1 to indole) at

170 $^{\circ}\!\!\mathrm{C}$ under M.W., led to good yields of 4, Scheme 1.

Scheme 1.

^a Isolated yields by column chromatograph.

CONCLUSION

In conclusion, the method described is very simple and efficient, furnishing good yields of products **3** and **4.** All compounds were isolated and characterized by ¹H and ¹³C NMR and GC/MS.

ACKNOWLEDGEMENTS

The authors thanks UFSM, FAPERGS/PRONEX n°10/0005-1, CAPES, MCT/CNPq for financial support.

REFERENCES

¹ Sundberg, R.J. In *The chemistry of Indoles;* Academic Press: New York, 1996:

² De Martino, G.; La Regina, G.; Coluccia, A.; Edler, M. C.; Barbera, M. C.; Brancale, A ; Wilcox, E.; Hamel, E.; Artico, M.; Silvestri, R. *J. Med. Chem.* **2004**, *47*, 6120; De Martino, G.; Edler, M. C.; La Regina, G.; Coluccia, A.; Barbera, M. C.; Barrow, D.; Nicholson, R, I.; Chiosis, G.; Brancale, A.; Hamel, E.; Artico, M.; Silvestri, R. *J. Med. Chem.* **2006**, *49*, 947.

⁴ Silveira, C. C; Mendes, S. R.; Wolf, L.; Martins, G. M. *Tetrahedron Lett.* **2010**, *51*, 2014; Silveira, C. C; Mendes, S. R.; Libero, F. M. *Synlett* **2010**, 790; Silveira, C. C; Mendes, S. R.; Ziembowicz, F. I.; Lenardão, E. J.; Perin, G. *J. Braz. Chem. Soc.* **2010**, *21*,371.

14th Brazilian Meeting on Organic Synthesis – 14th BMOS – September 01-05, 2011-Brasilia, Brazil

 ³ Sabitha, G; Yadav, J. S In *Encyclopedia of Reagents for Organic Synthesis*; Paquete, L. A., Ed.; Wiley-VCH: Weinheim, 2006; Bartoli, G.; Di Antonio, G.; Giovannini, R ; Giuli, S.; Lanari, S.; Paoletti, M.; Macantoni, E. *J. Org. Chem.* 2008, 73, 1919.
⁴ Silveira, C. C; Mendes, S. R.; Wolf, L.; Martins, G. M. *Tetrahedron Lett.*