





# Synthesis of potencial inhibitors of HIV-1Nef.

## Carlos Eduardo M. Salvador, Carlos Kleber Z. Andrade\*

Laboratório de Química Metodológica e Orgânica Sintética (LaQMOS), Instituto de Química, Universidade de Brasília, C.P. 4478, 70910-970, Brasília, DF, Brasil

Corresponding author. Tel.: +55 (61) 31073861; fax: +55(61) 32734149; e-mail: ckleber@unb.br

Keywords: HIV-1, Nef protein and CD4

### INTRODUCTION

A decreasing of the expression of CD4 receiver in the surface of the infected cells by Nef is one of the most important events during the infection by HIV-1. The identification of Nef inhibitors is very important to the treatment of HIV infection. The development of new therapies and methods of synthesis of Nef antagonists is a new and highly specific therapeutic approach and aims at eliminating the side effects involved with the existing anti-retroviral cocktail. To achieve this goal, we propose to synthesize a series of inhibitors of degradation of CD4 by Nef beginning with molecular modeling studies of the Nef protein and its catalytic domains involved in this function.<sup>1</sup> In this sense, compound **1** seems to be one of the most promising (Figure 1).<sup>2</sup>

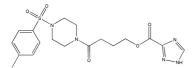
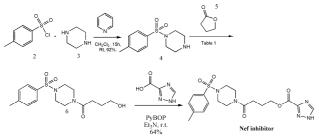




Figure 1: Structure of a potential Nef inhibitor.

#### **RESULTS AND DISCUSSION**

The first step of the synthesis of compound **1** is the sulfonation of piperazine **3** in the presence of pyridine in dichloromethane, affording compound **4** in 92% yield (Scheme 1).



Scheme 1: Synthesis of compound 1.

The next step involved the opening of  $\gamma$ butyrolactone by compound **4**. Among the different experimental conditions investigated, the use of  $\mu$ w irradiation (130 °C, 200 W, 1 h), was the only one to furnish compound **6** (Table 1, entry 5), thus demonstrating the efficiency of the microwave assisted reaction in contrast to the reactions under reflux.

Table 1. Experimental conditions for the opening of  $\gamma\text{-}$  butyrolactone opening by compound 4.

| Entry | Time | Temperature     | Solvent                         | Pressure | Yield |
|-------|------|-----------------|---------------------------------|----------|-------|
|       | (h)  | (°C)            |                                 | (atm)    | (%)   |
| 1     | 15   | Reflux          | Metanol                         | 1        | -     |
| 2     | 0,25 | Reflux          | CH <sub>2</sub> Cl <sub>2</sub> | -        | -     |
| 3     | 72   | 60              | CHCl₃                           | 120      | -     |
| 4     | 1    | 40/ μ <b>w</b>  | $CH_2CI_2$                      | -        | -     |
| 5     | 1    | 130/ μ <b>w</b> | -                               | -        | 79    |

In the final stage of the synthesis, compound **6** was coupled with 1,2,4-triazole-3-carboxylic acid **7**. Some coupling agents were tested, such as DCC / DMAP, EDC and PYBOP. Only the latter was able to provide compound **1** in 84% yield (Scheme 2).<sup>3</sup>

#### CONCLUSION

Compound **1**, a potential inhibitor of HIV-1 Nef, was efficiently obtained from piperazine by a 3-step sequence and its pharmacological properties will be now evaluated.

#### ACKNOWLEDGEMENTS

IQ-UnB, CAPES/REUNI, CNPQ and FINEP-CTINFRA  $n^{\underline{o}}$  0970/01.

#### REFERENCES

<sup>1</sup> Arganaraz, E. R.; *J. Biol. Chem.* **2003**, *36*, 33912

- <sup>2</sup> Salvador, C. E. M., Andrade, C. K. Z., Martins, J. B. L, 33<sup>a</sup> Reunião Anual da SBQ, **2010**,
- <sup>3</sup> Ulrich, M. S.; Buzko, O.; Shah, K.; Shokat, M. K.; *Tetrahedron* **2000**, *56*, 9495.

14th Brazilian Meeting on Organic Synthesis – 14th BMOS – September 01-05, 2011-Brasilia, Brazil