

Enantiospecific Synthesis of α,β-Diamino Acids via Rhodiumcatalyzed Intramolecular Formation of *N*-Sulfamoyl 2,3-Aziridino-γ-lactones

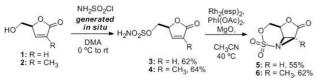
Marcelo S. Valle,^{1*} Mauricio F. Saraiva,² Mauro V. de Almeida³ and Robert H. Dodd⁴

 ¹Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, 57072-970, Maceió-AL, Brazil.
²Departamento de Física e Química, Instituto de Ciências Exatas, Universidade Federal de Itajubá, 37500-903, Itajubá-MG, Brazil, ³Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora, MG, Brazil. ⁴Centre de recherche de Gif-sur-Yvette, Institut de Chimie des Substances Naturelles, UPR 2301, CNRS, Avenue de la Terrasse, 9119, Gif-sur-Yvette, France.

*e-mail: marcelovalle@gmail.com

Keywords: aziridino-γ-lactone, amino acids, sulfamates

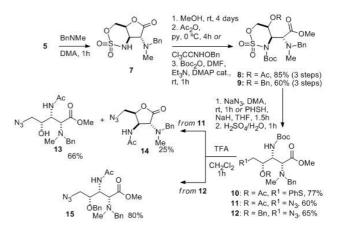
INTRODUCTION


Many examples of α,β -diamino acids are found in nature or as components of natural products and their core structure is part of a wide variety of therapeutically useful drugs.¹

2,3-Aziridino- γ -lactones have been shown to be valuable starting materials for the preparation of α - and β -amino acids.²

In this work, we wish to report the intramolecular aziridination of sulfamates derived from butenolide **1** as well as its 2-methyl derivative **2** to obtain 2,3-aziridino- γ -lactones. The reactivity of the latter toward nucleophiles and application of the procedure to the synthesis of α , β -diamino acids were subsequently studied.

RESULTS AND DISCUSSION


The optically pure aziridino- γ -lactones **5** and **6** can be obtained by direct rhodium-catalyzed intramolecular aziridination of the butenolide sulfamates **3** or **4** prepared from the known butenolides **1** and **2** (Scheme 1).

Scheme 1. Preparation of the aziridino- γ -lactones 5 and 6.

Regioselective opening of the aziridine ring of **5** with *N*-methyl-*N*-benzylamine gave derivative **7** (Scheme 2). Transformation of the latter into its *N*-protected and activated *N*-Boc derivative **8** was then accomplished in 3 steps with an overall yield of 85%. The analogous *O*-acetyl derivative **9** was obtained in 60% yield. The cyclic sulfamates were subjected to attack by azide or thiophenolate to give the corresponding α , β -diamino esters (**10-12**) in good

yields. Removal of the Boc group of **11** led to the products of *trans*-acetylation **13** and lactonization **14**. Starting from the OBn derivative **12**, lactonization was avoided, affording the α , β -amino acid **15** in 80% yield (Scheme 2).

Scheme 2. Protected $\alpha,\beta\text{-diamino}$ acids 12 and 14 from aziridino- $\gamma\text{-lactone}$ 5.

CONCLUSION

In conclusion, we describe herein an efficient intramolecular rhodium-catalyzed, iminoiodanemediated aziridination of 4sulfamoylmethylbutenolides, furnishing the corresponding aziridino- δ -lactones. This methodology allows access to α,β -diamino acids.

ACKNOWLEDGEMENTS

We thank CAPES (Brazil) for a "Sandwich" fellowship (MFS) and the ICSN for a postdoctoral fellowship (MSV).

REFERENCES

¹ Viso, A.; Fernandez de la Pradilla, R.; Garcia, A.; Flores, A. *Chem. Rev.* **2005**, *105*, 3167-3196.

14th Brazilian Meeting on Organic Synthesis – 14th BMOS – September 01-05, 2011-Brasilia, Brazil

² Tarrade-Matha, A.; Valle, M. S.; Tercinier, P.; Dauban, P.; Dodd, R. H. *Eur. J. Org. Chem.* **2009**, 673-686.