

Total synthesis of targretin via palladium catalyzed crosscoupling reaction of a vinyl organozinc intermediate

Palimécio G. Guerrero Jr.,*^a Paulo R. de Oliveira,^a Adriano C. M. Baroni,^b Francisco A. Marques,^c Gabriela R. Hurtado^d and Miguel J. Dabdoub^e

^a Department of Chemistry and Biology, Federal University of Technology, UTFPR, Curitiba, PR, Brazil

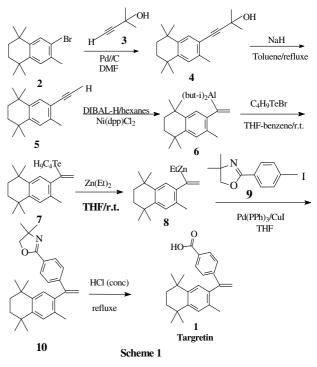
^b Department of pharmacy-biochemistry, Federal University of Mato Grosso do Sul, UFMS, Campo Grande, MS, Brazil

^c Department of Chemistry, Federal University of Parana, UFPR, Curitiba, PR, Brazil ^d Department of Chemistry, Federal University of Mato Grosso do Sul, UFMS, Campo Grande, MS, Brazil ^e Department of Chemistry, São Paulo University, USP, Ribeirao Preto, SP, Brazil

* pali@utfpr.edu.br, paligimenes@yahoo.com.br

Keywords: targretin, anticancer, synthesis, paladdium-cross coupling reaction

INTRODUCTION


In the last two decades, retinoids as isotretinoin, etretinate and acitretin have been utilized in treatment of primary cutaneous T-cell lymphoma (CLTC) showing modest response in rats.¹ However, the bexarotene (targretin®) 1 emerged as a potent and highly selective ligand for the retinoid X receptors (RXRs) applied in human patients to combat the CLTC, which have become a serious public health problem.

RESULTS AND DISCUSSION

The oral targretin was approved by the Food and Drug Administration (FDA) in 1999 and in 2002 in Europe. Actually it is widely used for treatment of breast cancer,² mycosis fungoides¹ and Sézary syndrome.¹

Considering their pharmacological activities, we described a short and efficient total synthesis of targretin which was started using the cross coupling reaction involving the 7-bromo-1,2,3,4,-tetrahydro-1,1,4,4,6-pentamethyl naftalene (obtained following experimental procedure described in the literature)³ 2 and 3-dimethyl-2-propyn-1-ol 3, furnishing the disubstituted acetvlene 4. Next. the retro-Favorsky elimination of 4 resulted in the terminal acetylene 5 hydrometallated⁴ which was with DIBAL-H/Ni(ddp)Cl₂, followed by Te/Al transmetallation affording the α -vinyl alana **6**, which was reacted with C₄H₉TeBr leading to the 1,1,-disubstituted vinyl telluride 7. The key step in the synthesis of targretin involved the Pd(PPh₃)₄/CuI cross coupling catalyzed reaction of aryl organozinc compound 8 (prepared in situ via Te/Zn transmetallation from 7)⁵ with the aryl iodide 9 to give the targretin-oxazoline 10.

Finally, the desprotection of 10 under concentrated HCI furnished the free carboxylic acid targretin 1 in 23 % overall yield from disubstituted acetylene 4 (Scheme 1).

CONCLUSION

We described here a novel and efficient total synthesis of the anticancer targretin.

ACKNOWLEDGEMENTS

CNPq, CAPES and Fundação Araucária

REFERENCES

¹Abbott, R. R.; Whittaker, S.L. ; Morris, R.; Scarisbrick, J. J. *Brit. J. Dermat.* **2009**, *160*, 1299. ²Howe, L. R. *Clin. Cancer Res.* **2007**, *13*, 5983.

- ³Boehm, M.; Zhang, L.; Badea.B. A. *J.Med. Chem.***1994**, *37*, 2930.

Gao, F.; Hoveyda, A. H. J. Am. Chem. Soc. 2010, 132,10961. ⁵Dabdoub, M. J. Dabdoub, V. B.; Marino, J. P. Tetrahedron Lett. 2000, 41.433.

14th Brazilian Meeting on Organic Synthesis – 14th BMOS – September 01-05, 2011-Brasilia, Brazil