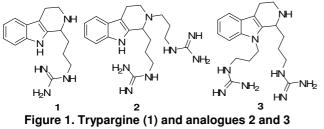


Studies toward the synthesis of potencial artificial nucleases derived from trypargine

Rodrigo V. Pirovani and Ronaldo A. Pilli*

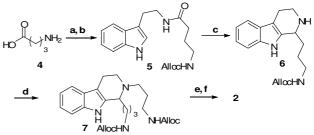
Instituto de Química - UNICAMP - Campinas, São Paulo, Brasil

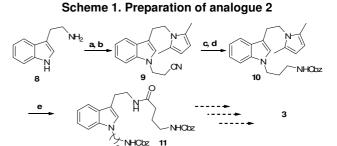

*pilli@iqm.unicamp.br

Keywords: β-carbolines, trypargine analogues, molecular recognition.

INTRODUCTION

The ability to efficiently hydrolyze nucleic acids in a biomimetic non-destructive process with high selectivity has become important because one can find many applications in structural design of new probes and drug development. This molecular recognition is a common feature in biological systems, where some functional groups form supramolecular systems by non-covalent interactions. For example, the guanidinium group present in the active site of the *Staphylococcus* nuclease is used to recognize the phosphodiester group, accelerating its hydrolysis.¹


Recently, our group has synthesized the alkaloid tetrahydro- β -carboline (S)-(-)-trypargine (1) that presents a side chain at C1 with a terminal guanidine residue.² Therefore, we decided to synthesize new derivatives of trypargine (2 and 3) in order to investigate their ability to recognize and trigger hydrolysis of phosphodiesters, such as DNA and RNA.


RESULTS AND DISCUSSION

The synthesis of analogue **2** started with a three step procedure developed in our group, to build intermediate 6^2 . Selective alkylation led to compound **7**, which was deprotected with Pd/C and triethylsilane, providing the free diamine which was subjected to guanylation conditions (Scheme 1).

Analogue **3** was prepared by protecting tryptamine **8** in the form of a 2,5-dimethylpyrrol prior to Michael addition to acrylonitrile, leading to compound **9**. Reduction of the nitrile gave the corresponding amine which was protected as a carbamate. Deprotection of the 2,5-dimethylpyrrol and coupling with Cbz-protected GABA, gave the advanced intermediate **11** in good yield over two steps (Scheme 2).

Reagents and conditions: a) Alloc-CI, THF/ NaHCO₃ solution (1:1), r.t., 24 h, 83%; b) Tryptamine, EDC, HOBt, THF, r.t., 18 h, 97%; c) (1) POCl₃, PhMe/MeCN (7:3), reflux, 2 h; (2) NaBH₄, MeOH, 0 $^{\circ}$ C-r.t., 4 h, 69%; d) allyl 3-bromopropylcarbamate, K₂CO₃, MeCN, r.t., 12h, 72%; e) Pd/C 10%, Et₃SiH, MeOH, r.t., 2 h, 45%; f) 1*H*-Pirazole carboxamidine, DIPEA, DMF, r.t., 24 h.

Reagents and conditions: a) 2,5-hexanedione, PhMe, reflux, 18h, 79%; b) Acrilonitrile, DBU, MeCN, 16 h, 50 $^{\circ}$ C, 99%; c) LiAlH₄, THF, r.t., 7h, 68%; d) Cbz-Cl, THF/ Na₂CO₃ solution (1:2), r.t., 24 h, 95%; e) (1) NH₂OH.HCl, Et₃N, Isopropanol/H₂O (3:1), reflux, 5 h; (2) GABA-Cbz, EDC, HOBt, THF, r.t., 18 h, 52% (two steps).

Scheme 2. Preparation of analogue 3

Also, the study of interaction between trypargine **1** and bis(p-nitrophenyl)phosphate by calorimetric and NMR techniques is currently under investigation.

CONCLUSION

The synthetic route for the preparation of compound 2 has been well established, the deprotection of the Alloc group and final purification still requiring optimization. The strategy used for compound 3 is promising, with three steps remaining to achieve the target structure.

ACKNOWLEDGEMENTS

We thank Fapesp and CNPq.

REFERENCES

 ¹ a) Cowan, J. A. *Curr. Opin. Chem. Biol.* **2001**, *5*, 634; b) Schug, K. A.; Lindner, W. *Chem. Rev.* **2005**, *105*, 67.
² Pilli, R. A.; Rodrigues Jr., M. T. *J. Braz. Chem. Soc.* **2009**, *20*, 1434.

14th Brazilian Meeting on Organic Synthesis – 14th BMOS – September 01-05, 2011-Brasilia, Brazil