

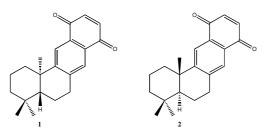
Synthesis, citotoxicity activity of new Cyclozonarone angular isomer

Cuellar, M;^a Quiñones, N;^a Villena, J;^a Salas, C.;^b Espinoza, L.^c

^a Facultad de Farmacia, Universidad de Valparaíso, Av. Gran Bretaña 1093, Valparaíso Chile.

^b Departamento de Química Orgánica, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860,

Santiago, Chile. Departamento de Química,


^cUniversidad Técnica Federico Santa María, Av. España Nº1680, Valparaíso, Chile.

*mauricio.cuellar@uv.cl

Keywords: ent-cyclozonarone; angular isomer; antitumoral activity

INTRODUCTION

Among the great variety of natural products, found in plants, algae and sea sponge, we can find compounds that have a quinonic/hydroquinonic moiety united to a terpenic skeleton. Natural (-)-cyclozonarone (1), is a drimanic benzoquinone derivative isolated from algae *Dintyopteris undulata* that posseses a powerful feeding-deterrant activity towards young abalones¹ furthermore shows anticancer activity.² The absolute configuration of 1 was establish through a six-step route, starting from natural (-) polygodial, leading us to the synthetic enantiomer (+)-cyclozonarone (2), that showed antileshmania activity.³ Later, (-)-cyclozonarone was synthesized starting from (+)-albicanol.⁴ Both routes of synthesis were based on the Diels-Alder reaction.

RESULTS AND DISCUSSION

In this work, we described to the synthesis of an angular isomer of (+)-ciclozonarona. The compound **6** was synthesized using as synthetic strategy the Diels-Alder cycloaddition reaction between diene **5** and p-benzoquinone, in a sequence of six steps from confertifoline **3** (Scheme 1). Furthermore we reported herein the *in vitro* testing of **2** and **6** to include normal and tumor cell lines in order to determine the broadness of the activity. The antitumoral activities of compounds were assayed against two cells lines (DU-145 and PC-3) (Table 1).

Scheme 1. Reagents and conditions. (a) Ref 5; (b) vinylmagnesium bromide, THF; (c) $SOCl_2$; (d) p-benzoquinone, Bz, reflux.

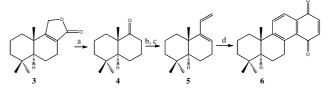


Table 1. Antitumoral activity, IC₅₀ (µM)

Compound	DU-145	PC-3	DHF
2	20	25	37
6	42	45	65

CONCLUSION

In summary, we described here the synthesis of a new cyclozonarene isomer and anticancer evaluation of *ent*-cyclozonarone and its angular isomer. As compared with the tumor cell lines analyzed, we found ent-cyclozonarone had major antitumoral effect (Table 1). The comparison of the respective IC50 showed that normal cells were less sensitive to **2** and **6** compounds.

ACKNOWLEDGEMENTS

The authors thank Facultad de Farmacia de la Universidad de Valparaíso and CORFO Grant 07 CT9PDT-68

REFERENCES

¹Kurata, K., Tanaguchi, K., Susuki, M.; Phytochem., **1996**, 41, 749.

⁵ Benites, J., Preite, M., Cortés, M.; Synth. Commun. **2001**, 42, 8151.
⁵ Jaste, J., Preite, M., Cortés, M.; Synth. Commun. **2001**, 31 (9), 1347-1354.

 ² Curtis, M. D.; Shiu, K.; Butler, W. M. e Huffmann, J. C. *J. Am. Chem. Soc.* **1986**, *108*, 3335.
³ Cortés, M., Valderrama, J. A. Cuellar, M. Armstrong, V., Preite, M.; J. Nat.

 [°] Cortés, M., Valderrama, J. A. Cuellar, M. Armstrong, V., Preite, M.; J. Nat. Prod., 2001, 64, 348.
⁴ Seifert, K., Schröder, J., Matthes, B. Tetrahedron Lett., 2001, 42, 8151.