

Synthesis of (Z)-thiobutenynes using NaOH or TBAOH as activator: a comparative study

Amanda S. Santana, Luiz H. Viana, Gabriela R. Hurtado, Nadla S. Cassemiro, Diego B.

de Carvalho, 1 Palimécio G. Guerrero Jr2 and Adriano C. M. Baroni*1

*adriano.baroni@ufms.br

Keywords: Hydrothiolation; 1,3-diacetylenes; organylthiolate anion; (Z)-thiobutenynes; TBAOH.

INTRODUCTION

Organylthioenynes have became useful synthons recently, due their possible applications on the synthesis of enediynes and thiophenes.

Recently the preparation of (Z)-thiobutenynes through hydrothiolation of 1,3-diacetylenes using NaBH₄ and C₄H₉SSC₄H₉ to generate nucleophilic sulfur species such as BuS and PhS was reported by us.¹

This systematic study allowed us to understand the limitations and potential of this methodology in the preparation of (Z)-thiobutenynes. However, (Z)-thiobutenyne **2**, was obtained in low yield (40%) using this methodology.

RESULTS AND DISCUSSION

In order to improve the synthesis of (Z)-thiobutenynes with high yields we investigated the hydrothiolation reaction to prepare **2** with traditional method using C₄H₉SH/NaOH,² and other using TBAOH 40% in H₂O (1.4 equiv), as phase transfer catalyst, to generate the anion C₄H₉S⁻ from the C₄H₉SH (1.4 equiv) (Scheme 1).

Scheme 1. Hydrothiolation reaction

$$R = \frac{1}{1}$$

$$R' \xrightarrow{C_4H_9SH}$$

$$R = R' \text{ ou } R \neq R'$$

$$R = R' \text{ ou } R \neq R'$$

$$R = R' \text{ ou } R \neq R'$$

The hydrothiolation reaction in the presence of TBAOH and NaOH have proved to be highly region-, stereo-, and chemoselective. However, the five examples of (Z)-thiobutenynes synthesized by new approach were obtained in better yields and shorter reaction time than ones prepared only using NaOH (Table 1).

Table 1. (<i>Z</i>)-thiobutenynes synthesized		
(Z)-thiobutenynes	Time (Yield %) ^b NaOH	Time (Yield %) ^b TBAOH
BuS 1	8h (71)	30 min. (93)
H ₃ CO OCH ₃ BuS P ₃ CO OCH ₃	24h (56)	15 min. (90)
Bus CI	8h (52)	15 min. (78)
HO Bus	1h (71)	5 min. (83)
C₄H ₉ BuS 5	24h (65)	9 h (89)

^a Reactions performed in the presence 1,3-diacetylene, TBAOH (1.4 equiv), BuSH (1.4 equiv) in EtOH under reflux. ^b Product isolated and purified by column chromatography.

CONCLUSION

In conclusion, we developed a new and highly efficient procedure to prepare (Z)-thiobutenynes in good to excellent yields on shorter reaction time. Studies are being conducted to demonstrate the generality of this methodology.

ACKNOWLEDGEMENTS

FUNDECT-MS, PROPP-UFMS, CNPq

REFERENCES

² Freeman F.; Lu H.; Zeng, Q. J. Org. Chem. **1994**, *59*, 4350.

¹Dep. de Farmácia-Bioquímica e Química – Universidade Federal de Mato Grosso do Sul – UFMS, Campo Grande/MS – Brasil.

² Lab. de Síntese Orgânica e Produtos Naturais, Depto de Química e Biologia, Universidade Tecnológica Federal do Paraná, UTFPR, Curitiba/PR, Brasil.

¹ Dabdoub, M. J.; Dabdoub, V. B.; Lenardão, E. J.; Hurtado, G. R.; Barbosa, S. L.; Guerrero Jr. P. G.; Nazário, C. E. D.; Viana, L. H.; Santana, A. S.; Baroni, A. C. M. *Synlett* **2009**, 986.