

An expeditious approach to tetrahydroindolizines from Morita-**Baylis-Hillman Adducts**

Bruno V. M. Teodoro, José Tiago M. Correia and Fernando Coelho*

Laboratory of Synthesis of Natural Products and Drugs, Institute of Chemistry, University of Campinas-

UNICAMP, P.O.Box 6154, 13083-970, Campinas-SP-Brazil

*coelho@iqm.unicamp.br

Keywords: indolizines, Morita-Baylis-Hillman (MBH) Reaction, hydrogenation

INTRODUCTION

Indolizines are important building blocks for synthesis of biomarkers, drugs and alkaloids that posses the indolizidinic core. This type of heteroaromatic skeleton can be prepared using different approaches.¹ Recently Morita-Baylis-Hillman adducts were used as building block for the synthesis of indolizidinic unity^{2,} However, applications of these molecules remain almost unexplored.

In this communication, we disclosed our preliminary results on a simple strategy to access tetrahydroindolizines and indolizidines by partial or total hydrogenation of indolizines prepared from MBH adducts.

RESULTS AND DISCUSSION

The indolizines (3a-f) were prepared from MBH adducts (1a-f) according to a methodology reported on literature some years ago.

$$R \underbrace{\bigcup_{i=1}^{O} H}_{N} + \prod_{i=1}^{R'} \underbrace{DABCO,))) \rightarrow R \underbrace{\bigcup_{i=1}^{O} H}_{N} R' = \underbrace{1.) \text{ Accl, pindine}}_{2.) \text{ Toluene, reflux}} R \underbrace{R}_{N} R'$$

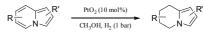

Scheme 1. Preparation of indolizines from MBH adducts

Table 1. Indolizines from MBH adducts.

		01-6-		
Entry	Aldehyde	Olefin	MBH Adduct (Yield %)	Indolizine (Yield)
1	⊖_N H	CO ₂ Me	OH N CO ₂ Me	Cn→- ^{co₂Me} 3a (55)
			1a (93)	
2	о н	CO2Et		
			1b (96)	3b (52)
3	UN H	CO ₂ n-Bu	OH CO ₂ n-Bu	Слу-СО20-Ви
			1c (93)	3c (59)
4	H ₃ C H	CO ₂ Me		H ₃ C CO ₂ Me
			1d (85)	3d (39)
5	N H	CO ₂ Me	OH CO ₂ Me	CO ₂ Me
	\checkmark		1e (88)	3e (45)

indolizines With the in our hands. hydrogenation reactions were performed. Four 15th Brazilian Meeting on Organic Synthesis – 15th BMOS – November 10-13, 2013 - Campos do Jordão, Brazil

protocols were tested. First, we decide to reproduce an experiment described previously where the Adam's catalyst (PtO₂) were used under 1 atm hydrogen atmosphere. In these cases, we observed partial reduction of indolizines, affording tetrahydroindolizines as unique products in excellent yields (Table 2). The same results can be obtained using Pd/C catalyst. However, when Rh/C and Rh/Al₂O₃ catalysts were used, no reduction was observed.

Scheme 2. Preparation of tetrahydroindolizines

Table 2. Tetrahydroindolizines from indolizines

Entry	Indolizine	Tetraidroindolizine	Yield (%)
1			93
	3a	4a	
2	Sb	(_N_)Co₂Et 4b	91
	SD	4D	
3	3c	<u>v</u> v∕−co₂⊷ou 4c	95
	H ₃ C	H ₃ C	
5	GN → co₂Me 3d	Un → co₂me 4d	79
	Su	40	
6	C N CO ₂ Me	CO2Me	67 ^ª
	3e	4e	

^a Reactions were carried out in 48h under 4 bar hydrogen atmosphere.

CONCLUSION

Our results clearly demonstrated that partial reduction of indolizines can be achieved in excellent yields, at low pressure, using simple reducing agents. Studies focused on partial or total asymmetric hydrogenation using homogeneous catalysts are ongoing in our laboratory.

ACKNOWLEDGEMENTS

We thank FAPESP and CNPq for grants and financial support.

REFERENCES

¹Gadad, A. K.; Mahajanshetti, C. S.; Nimbalkar, S.; Raichurkar, A. Eur. *J. Med. Chem.* **2000**, 35, 853. ² Coelho, F.; Almeida, W. P.; Mateus, C. R.; Feltrin, M.; Costa, A. M. *Tetrahedron* **2001**, 57, 6901. ³ Rodrigues Jr., M. T.; Gomes, J. C.; Smith, J.; Coelho, F. Tetrahedron Lett. 2010, 51, 4988.