

Targeting *Echinococcus granulosus* thioredoxin glutathione reductase using a Dynamic Combinatorial approach.

Cecilia Saiz,^a Valerie Castillo,^a Gustavo Salinas^b and S. Graciela Mahler.^a

a. Cátedra de Química Farmacéutica, Facultad de Química, Universidad de la República (UdelaR), Montevideo, Uruguay. b. Cátedra de Inmunología, Facultad de Química, UdelaR, Montevideo, Uruguay.

*e-mail corresponding author: cecisaiz@gmail.com

Keywords: dynamic combinatorial chemistry, thioredoxin glutathione reductase, sulfur-heterodimers.

INTRODUCTION

Dynamic Combinatorial Chemistry (DCC) is a synthetic tool that merges chemical synthesis with biological tests in one pot.¹ The library is under thermodynamic control and introduction of a template could stabilize a compound through library redistribution *via* reversible bonds. This stabilization could result on an amplification of the best binder.

E. granulosus is a flatworm parasite responsible for cystic hydatid disease. Its thiol redox homeostasis is dependent on an essential single enzyme: thioredoxin glutathione reductase (TGR), which is a key drug target.²

RESULTS AND DISCUSSION

Exploring for new *E. granulosus* TGR inhibitors through site-specific DCC, we aimed to generate a thiol-disulfide dynamic library using TGR as a template. The library was prepared using TNB (**a**), commercially available thiols (**b**-**e**) and the synthetic thiol (**f**),³ to afford 21 theoretical disulfides. Library distribution was compared before and after enzyme introduction. In presence of the template (TGR), a shift in the equilibrium towards a new stabilized compound (**a**S-S**f**) was observed by HPLC-MS.

Building blocks		Virtual DCL			Amplification
a) TNB = HO_2C SH b) Ph-SH O_2N c) Bn-SH f) BisTZ SH d) Glutathione HO_2C SH SH SH S SH	pH 8.8, 24h	aS-Sa bS-Sb cS-Sc dS-Sd eS-Se fS-Sf aS-Sb	aS-Sc aS-Sd aS-Se aS-Sf bS-Sc bS-Sd bS-Se	bS-Sf cS-Sd cS-Se cS-Sf dS-Se dS-Sf eS-Sf	template


Figure 1. DCL: thiol/disulfide exchange introducing TGR as a template.

Building upon these promising results, we started an independent synthesis of the library-hit **a**S-S**f** and several analogs, see scheme 1.

A-SH + B-SH
$$\xrightarrow{O_2, \text{ DMAP}}_{CH_2Cl_2, \text{ rt}}$$
 A^{-S}S^{-B} Yields = 35 to 75%

Scheme 1. General preparation of A-S-S-B heterodimers.

The analogs were prepared by variations in both thiols: the bisthiazolidine moiety (series A) and the aromatic ring (series B):

The prepared disulfides were screened for TGR inhibition at [Inh] = 30 μ M. Compounds with the highest inhibition values were selected for IC₅₀ determination (**af**, **ah** and **ai**); see Figure 2.

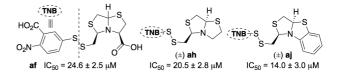


Figure 2. $IC_{50} \pm sd$ values of compounds af, ah, and aj.

A structure activity relationship study was performed and the TNB-tricyclic disulfide (**aj**) was identified as the best enzyme inhibitor (IC_{50} = 14 µM).

CONCLUSION

We have demonstrated the use of a thiol-disulfide DCL using *E. granulosus* TGR as a template for the first time. The disulfide (**af**) was identified as a library amplified compound, combining TNB (**a**) and bisthiazolidine (**f**). Independent synthesis of (**af**) and 14 further analogs were carried out for biological evaluation on TGR. Compound (**aj**) presents the best inhibition value: $IC_{50} = 14 \mu M$.

ACKNOWLEDGEMENTS

ANII, PEDECIBA, CSIC 807, CSIC grupos, FQ.

REFERENCES

¹ Otto, S.; Furlan, R.; Sanders, J.K.M. *Curr. Opin. Chem. Biol.* **2002**, *6*, 321-327.

² Kuntz, A.N.; Davioud-Charvet, E.; Sayed, A.A.; Califf, L.L.; Dessolin, J. et al. PLoS Med **2007** 4(6): e206. doi:10.1371/journal.pmed.0040206.
³ Saiz, C.; Castillo, V. and Mahler, S.G. Synlett **2012**, 23, 1090-94.

15th Brazilian Meeting on Organic Synthesis – 15th BMOS – November 10-13, 2013 - Campos do Jordão, Brazil