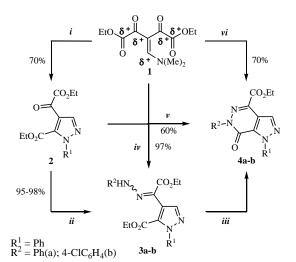


Synthetic Application of New Enaminodiketone: Regioespecific Synthesis of Aza-Heterocycles

Fernanda A. Rosa^{*}, Michael J. V. da Silva, Davana S. Gonçalves, Daniela H. Arita, Camila S. S. Tozatti, Gisele de F. G. Bandoch

Estereoquímica de Compostos Orgânicos e Docking Molecular (ECO), Departamento de Química (DQI), Universidade Estadual de Maringá, CEP 87.020-900, Maringá, PR, Brasil.

*e-mail corresponding author: farosa@uem.br


Keywords: enaminodiketones, pyrazoles, pyrazolopyridazinones

INTRODUCTION

Aza-heterocyclic compounds, such as pyrazoles¹ and pyridazinones², have become increasingly important because they have proven to be extremely bioactive moieties. The synthesis of nitrogencontaining heterocyclic compounds has been well by reacting of blocks explored precursors enaminodiketones with N-(C)_n-N dinucleophiles. Data from the literature have demonstrated an efficient method for obtaining а series of enaminodiketones from C-acylation of enaminoketones with ethyl oxalyl chloride3-5. The reaction of these precursors with N-N dinucleophiles was shown to be highly attractive for the synthesis of multifunctionalized pyrazoles⁴ and other azaheterocyclic.⁵ Thus, considering the importance of nitrogen-containing heterocyclic compounds, the aim of this work, is to report synthetic application to multifunctionalized obtain pyrazole and pyrazolopyridazinones from cyclocondensation reaction of enaminodiketone (1) block precursor with hydrazines.

RESULTS AND DISCUSSION

The synthesis of the new precursor ßenaminodiketone C-(1) was performed from acylation 3of ethyl [(dimethylamino)methylidene]pyruvate⁶ with ethyl oxalyl chloride in dichloromethane and pyridine³. Synthetic application and study on the different electrophilic centers present in the enaminodiketone system was evaluated from cyclocondensation reaction with hydrazines (scheme 1). Surprisingly, the reaction of compound 1 with phenylhydrazine was regioespecific affording pyrazole 2. The reaction of pyrazole 2 with an additional equivalent of hydrazine leading pyrazolopyridazinone (condiction V) and when employed reaction condiction *ii* the intermediate hydrazonylpyrazole 3 was isolated in the form of stereoisomers E (75%) and Z (25%). In addition, the compounds 3 and 4 were also obtained from the enaminodiketone 1 with two equivalent of hydrazine (condiction *iv* and *vi*). Thus, was possible to obtain three differents compounds varying only the reaction condiction. The compounds were characterized by MS, ¹H and ¹³C NMR Spectroscopy, HSQC and NOESY.

i) EtOH, NH₂NHR¹, r.t.; *ii*) CH₂Cl₂, NH₂NHR², BF₃, QEt₂, r.t.; *iii*) EtOH, AcOH, reflux; *iv*) CH₂Cl₂, NH₂NHR²(2 eq.), BF₃.OEt₂, r.t. (**4a**); *y*) EtOH, NH₂NHR²(2. eq.), AcOH, reflux; *vi*) EtOH, NH₂NHR²(2 eq.), reflux (**5a**).

Scheme 1.

CONCLUSION

In summary, the reaction of enaminodiketone 1 with phenylhydrazine was regiospecific and shown to be hiahlv attractive for the synthesis of multifunctionalized pyrazole. Furthermore, the enaminodiketone 1 was shown to be powerful precursor for the construction of new azaheterocyclic derivatives.

ACKNOWLEDGEMENTS

The authors thank the financial support from CNPq, CAPES and Fundação Araucária.

REFERENCES

Srivastava, B. K. et al. J. Med. Chem. 2007, 50, 5951; [2] Suerre, N. et al. Bioorg. Med. Chem. 2009, 17, 7174; [3] Rosa, F. A. et al. Synlett, 2007, 3165; [4] Rosa, F. A. et al. Synlett 2008, 1673; [5] Rosa, F. A. et al. Synthesis 2008, 3639; [6] Hanzlowsky, A. et al. J. Heterocycl. Chem. 2003, 40, 487.

15th Brazilian Meeting on Organic Synthesis – 15th BMOS – November 10-13, 2013 - Campos do Jordão, Brazil