

Synthesis of Aza-Pterocarpan Analogues *via* 1,3 Intramolecular Dipolar Cycloadditions in *in situ* generated Iminoolefins

Julio C.F.Barcellos¹(PG)*, Ayres G. Dias²(PQ), José M. Sansano³(PQ), Carmen Nájera³ (PQ), Paulo R. R. Costa¹(PQ)

*ju8liojpa@hotmail.com

Keywords: 1,3 dipolar-cycloaddition, aza-pterocarpanes, imines in situ.

INTRODUCTION

As part of a program directed towards the discovery of new compounds with anticancer and antiparasitic action, we recently synthesized azapterocarpans such as 1 (Figure 1), through a azaHeck palladium catalyzed reaction.¹ This substance showed significant activity against strains of cancer and Leshimania.¹

Figure 1. Aza-pterocarpan 1 and analogs (2).

Here, dipolar cycloaddition (1,3-DCI) of imines (3) were made. These intermediates were generate in *situ* by reaction of salicylaldehydes (4a,b) with the amino acids glycine (5a), alanine and phenylalanine (5b,c) (used as racemates, we describe the synthesis of new derivatives of 1, of type 2 (analogs of 1) through intramolecular 1,3) and the amino diethyl malonate (5d).

Scheme 1. Retro-analysis for the preparation of **2** through 1,3-dipolar cyclo-addition.

RESULTS AND DISCUSSION

Were performed in total, eight reactions in a microwave reactor (Table 1), at least in duplicate, using amino acids **5a-d** and acceptors **4a** (R_1 =Ph) and **4b** (R_1 =CO₂Me). Except for the entry 7, the major products presented fusion *cis* between the

benzopiranic (B) and pirrolidinic (C) rings.² The major products in each reaction could be enriched after column chromatography. The structure of the major product of entry 1 was confirmed by X-ray of N-tosylated derivative **3** (Scheme 2).

The structure of the other products (majors and minors) is being studied.

Entry	\mathbf{R}^{1}	R ²	(%) Major	(Major)/ (Others)	Reaction (%)
1	Ph	Н	30	(65:35)	45
2	Ph	Me	67	(83:17)	77
3*	Ph	CO ₂ Et	75	(90:10)	83
4	Ph	Bn	54	(68:32)	79
5	CO ₂ Me	Н	30	(60:40)	50
6	CO ₂ Me	Me	30	(60:40)	50
7*	CO ₂ Me	CO ₂ Et	25	(50:50)	50
8	CO ₂ Me	Bn	48	(70:30)	68

* Ethyl ester used in this case.

Scheme 2. Synthesis of 3.

CONCLUSION

The microwave allowed the generation of imines *in situ*, eliminating a step for the formation of synthetic analogues of **1**. The prepared products are being evaluated as anticancer and antiparasitic.

ACKNOWLEDGEMENTS

CNPq, CAPES, FAPERJ.

REFERENCES

¹Buarque, C.D. et al. *Bioorganic & Medicinal Chemistry* **2011**, *19*, 6885. ²Bashiardes G., et al. *Organic Letters*, **2003**, *25*, 4915.

15th Brazilian Meeting on Organic Synthesis – 15th BMOS – November 10-13, 2013 - Campos do Jordão, Brazil