

Bromination of 4-bromoindanone and 5-bromoindanone

^aAhmet Tutar*, ^aMakbule Yılmaz, ^bRamazan Erenler

^aSakarya University, Faculty of Art and Science, Department of Chemistry, TR-54187 Adapazari, Turkey ^bGaziosmanpasa University, Faculty of Art and Science, Department of Chemistry, TR-60240 Tokat, Turkey

*e-mail corresponding author:atutar@sakarya.edu.tr

Keywords: Bromination reactions, bromoindanone.

INTRODUCTION

Brominations of hydrocarbons are important processes in synthetic chemistry.¹⁻² Brominated compounds are valuable starting materials for organometallic reagents³ and coupling reactions.⁴ Indanes and indanones are used extensively in medicinal chemistry.⁵

Herein, we carried out the bromination reactions of 4-bromoindanone, 5-bromoindanone and formed the di- and tribromoindanone which could be the precursors for synthesis pharmaceutically, synthetically and medicinally important compounds.

RESULTS AND DISCUSSION

The treatment of 4-bromoindanone (1) with 2.2 equivalent of bromine at room temperature for 2 h yielded 2,2,4-tribromoindanone (2) in quantitative amount. 4-bromoindanone (1) reacted with bromine in carbon tetrachloride and triethylamine while irradiation with a 150 W projector lamp for 12 h gave dibromide 3 (65%). 2,2,5-tribromoindanone (5) was generated by treatment of 5-bromoindanone (4) with 2.2 equivalent of bromine in dichloromethane at rt for 2 h in a yield of 90%. The reaction of 5-bromoindanone with 3.2 equivalent of bromine in carbontetrachloride and Et₃N at rt while irradiation with a 150 W projector lamp for 12 h gave 2,3,5-tribromoindenone (6) in 58% yield. (Scheme).

Scheme: Bromination reactions of 4-bromoindanone and 5-bromoindanone

Table 1. ¹H-NMR (300 MHz, CDCl₃), ¹³C-NMR values ofsynthesized compounds, 2,3,5,6.

Comp.	Spectral Values
2	¹ H-NMR: 7.92–7.86 (m, 2H), 7.44–7.38 (m,1H) , 4.20 (s, CH ₂). ¹³ C-NMR: 192.4, 147.2, 139.8, 131.4, 130.9, 125.6, 121.4, 55.6, 53.3
3	¹ H-NMR: 7.8 (s, 1H), 7.35-7,45 (m, 2H), 7.05 – 7.12 (m,1H)
5	¹ H-NMR: 7.82–7.78 (d, 1H), 7.66 – 7.58 (dd, 2H) , 4.20 (S, CH ₂). ¹³ C-NMR: 191.9, 148.8, 133.0, 132.7, 129.5, 128.1, 128,0, 56,0, 52,1
6	¹ H-NMR:7.50–7.46 (m,1H), 7.34–7.26 (m, 2H), ¹³ C-NMR: 185.6, 144.8, 144.3, 132.8, 129.6, 127.7, 124.9, 124.3, 124.0

CONCLUSION

Bromination of 4-bromoindanone (1) and 5bromoindanone (4) were accomplished efficiently and optimum reaction conditions were presented.

ACKNOWLEDGEMENTS

The authors thank to the Sakarya University Research Foundation (BAP-2010-02.04.06).

REFERENCES

¹Cakmak, O.; Erenler, R.; Tutar, A.; Celik, N. *J.Org. Chem.* **2006**, 71, 1795. ²Tutar, A.; Balci, M. *Tetrahedron*, **2002**, 58, 8979.

³Anderson, H. L.; Walter, C. J.; Vidal-Ferran, A.; Hay, R. A.; Lowden, P. A.; Sanders, J. K. M. *J. Chem. Soc., Perkin Trans.* **11995**, 18, 2275.

⁴Miyaura, N.; Suzuki, A. *Chem. Rev.* **1995**, 95, 2457.

⁵Hu, H.; Hollinshead, S. P.; Hall, S. E.; Kalter, K.; Ballas, L. M. *Bioorg. Med. Chem. Lett.* **1996**, *6*, 973-978.

15th Brazilian Meeting on Organic Synthesis – 15th BMOS – November 10-13, 2013 - Campos do Jordão, Brazil