

Electrochemical dimerization of benzyl chloride on a powder cathode of silver, graphite or silver-graphite mixture

Ronny F. M. Souza^{a,b}, Madalena C. C. Areias^b, Marcelo Navarro^b, Michel Laurent^c,

Eric Léonel^c, Christine Cachet-Vivier^c and Lothar W. Bieber^{b*}

^a Instituto Federal de Alagoas, Campus Piranhas, Brazil

*bieberlothar@hotmail.com

Keywords: cavity cell, benzyl halides, solvent-free

INTRODUCTION

The main challenge in organic synthesis is the formation of new C-C bonds in order to construct more complex carbon skeletons in a defined arrangement. In contemporary electrochemical publications, such C-C couplings are still a minor subject¹. Herein we reported an application of a new electrochemical cell which uses graphite powder, silver powder or mix graphite/silver powder in the cathode cavity combined with an aqueous anolyte²⁻⁴ to promote the dimerization of benzyl chloride in good yield.

RESULTS AND DISCUSSION

Voltammetries of benzyl chloride (1) were carried out, using the electrochemical cavity cell with very slow scan rates²⁻⁵ in powder cathode of silver, graphite or graphite-silver mixture with different mass ratios for producing toluene (2) and bibenzyl (3) (Figure 1), and are summarized in Table 1.

PhCH₂CI
$$\xrightarrow{\text{ne}^2}$$
 PhCH₃ + PhCH₂CH₂Ph
1 2 3

Figure 1. Electrochemical dimerization of benzyl chloride.

The observed peak potentials (E_{peak} vs. Ag/AgCl, saturated KCl) show that increasing the amount of graphite in the silver/graphite mixture promotes a slightly peak shift towards negative values, however still remains higher (less negative) than E_{peak} value observed for reduction reaction performed at pure graphite, showing a significant electrocatalytic activity of the silver.

The better yields of the dimer **3** were observed in entries 3 and 4. During these voltammetries, it was observed a chromatographic yield of 18 to 11% of toluene. In summary, the presence of 75% and 50%

of graphite in the powder cathode mixture improves significantly the yield of **3**.

Table 1. Electrochemical dimerization of benzyl halides

^a Entry	%Ag	^b E _{peak}	^c 2	^c 3
1	100	-0.65 / -0.82	48	13
2	75	-0.73	29	71
3	50	-0.82	18	82
4	25	-0.95	11	89
5	0	-1.36	23	70

 $^{\rm a}$ Voltammograms recorded at electrode containing 150 mg of mixture x% silver/ 100-x% graphite powders (noted x% Ag + 100-x% G) in different proportions (with x = 25%, 50% and 75%), impregnated with 0.52 mmol of PhCH₂Cl at 0.1 mV s $^{\rm -1}$ using anolyte 0.1 mol L $^{\rm -1}$ KCl. $^{\rm b}$ (vs. Ag/AgCl sat. KCl); $^{\rm d}$ Chemical yield determined by H $^{\rm 1}$ NMR.

CONCLUSION

We demonstrated here the potential use of the powder cathode of silver, graphite or graphite-silver mixture on the reductive homo-coupling of benzyl halides, in a cavity cell. The procedure eliminates organic solvents, supporting electrolytes and sacrificial anodes, traditionally used in electrosynthetic methods. This procedure can be highlighted by low environmental impact.

ACKNOWLEDGEMENTS

The authors wish to thank CNPq and CAPES by financial support.

REFERENCES

^b Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, av. Prof. Luis Freire S/N, 50740-901 Recife, Brazil

^c Equipe Electrochimie et Synthèse Organique, Institut de Chimie et des Matériaux Paris-Est UMR 7182 CNRS-Université Paris Est-Créteil, 2 rue H. Dunant, 94320 Thiais, France

¹ Yoshida, J.; Katoaka, K.; Horcajada, R.; Nagaki, A. *Chem. Rev.* **2008**, *108*, 2265.

Areias, M. C. C.; Navarro, M.; Bieber, L. W.; Diniz, F. B.; Leonel, E.; Cachet-Vivier, C.; Nedelec, J. Y. *Electrochim*. Acta, **2008**, *53*, 6477.
 Souza, B. F. M.; Souza, C. A.; Areias, M. C. C.; Cachet-Vivier, C.;

³ Souza, R. F. M.; Souza, C. A.; Areias, M. C. C.; Cachet-Vivier, C.; Laurent, M.; Barhdadi, R.; Navarro, M.; Bieber, L. W. *Electrochim*. Acta, 2010, *56*, 575.

²⁰¹⁰, *56*, 575.

⁴ Souza, R. F. M.; Areias, M. C. C.; Bieber, L. W.; Navarro, M. *Green Chemistry*, **2011**, 13, 1118.

Souza, R. F. M.; Areias, M. C. C.; Bieber, L. W.; Navarro, M. RSC Advances: an international journal to further the chemical science, 2013, 3, 6526.