

Ritter reaction of *N*-(hydroxymethyl)saccharin with nitriles: synthesis of new *N*-(amidomethyl)saccharins

Marllon N. de Oliveira e Marcio C. S. de Mattos*

Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, CP 68545, 21945-970, Rio de Janeiro, Brazil.

*e-mail: mmattos@iq.ufrj.br

Keywords: Ritter reaction; N-hydroxymethyl saccharin; Amide

INTRODUCTION

Considerable interest has been focused on saccharin derivatives which have been shown to possess a broad spectrum of biological activities, such as fungicidal, antibacterial, and anti-inflammatory effects.^{1,2}

The Ritter reaction, first reported in 1948, allows the formation of amides and it is particularly useful for the preparation of bulky products. In this reaction, a carbocation generated *in situ* from an alcohol, an alcohol derivative, or an olefin is trapped by a nitrile to produce a nitrilium species, which after hydrolysis produces an amide. In the case of alcohols, the substrate itself generates H_2O and the process becomes atom-economical. Other reactions in which a carbocation generated *in situ* is trapped by nitrile are referred to as Ritter-type reactions.³

Thus, it was proposed to prepare new drug candidates through the Ritter reaction, by analogy to the work of Buc,⁴ condensing *N*-(hydroxymethyl)-saccharin with nitriles.

RESULTS AND DISCUSSION

N-(hydroxymethyl)saccharin (2), prepared in 92% yield from saccharin (1) and formaldehyde,⁵ was reacted with equimolar amount of diverse nitriles in H_2SO_4 at room temperature to afford, after work-up, the new crystalline amides (3) in 16 – 87% isolated yield. No further purification was necessary, as showed by the analytical data (IR and ¹H NMR). (Scheme 1 and Table 1 summarize the results).

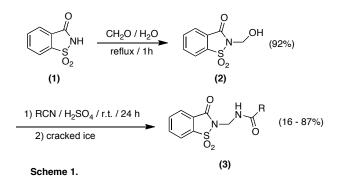
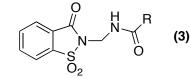



 Table 1. Yields for new N-(amidomethyl)saccharins.

3	R	mp (°C)	Yield (%) [*]
а	Ме	148-150	73
b	Et	> 300	52
с	Ph	159-160	87
d	CH ₂ =CH	> 300	68
е	CH ₂ CO ₂ Et	125-127	16

Isolated.

CONCLUSION

We have accomplished the synthesis of five new *N*-(amidomethyl)saccharins (**3**) through the Ritter reaction of *N*-(hydroxymethyl)saccharin with nitriles in H_2SO_4 .

ACKNOWLEDGEMENTS

We thank CNPq and FAPERJ for financial support.

REFERENCES

- ¹ Okachi, R.; Niino, H.; Mineura, K.; Nakamizo, Y.; Murayama, Y.; Ono, T.; Nakamizo, A. *J. Med. Chem.*,**1985**, *28*, 1772-1779.
 ²Güzel, Ö.; Salman, A. *Bioorg. Med. Chem.*, **2006**, 14, 7804-
- 7815.
- ³ Guérinot, A.; Reymond, S.; Cossy, J. *Eur. J. Org. Chem.*, **2012**, 19-28.
- ⁴ Buc, S. R. J. Am. Chem. Soc., **1947**, 69, 254-256.
- ⁵ Siddiqui, W.; Ahmad, S.; Kham, I.; Siddiqui, H.; Weaver, G. Synth. Commun., **2007**, *37*, 767-777.

15th Brazilian Meeting on Organic Synthesis – 15th BMOS – November 10-13, 2013 - Campos do Jordão, Brazil