

C5 atom of D-galactopyranose as a source of chirality: preliminary results

Maria Joselice e Silva, Paulo Roberto da Silva and Bogdan Doboszewski^{2*}

¹Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, 59010-180 Natal, RN;

²Departamento de Química and Departamento de Ciências Moleculares, Universidade Federal Rural de

Pernambuco, 52171-900 Recife, PE, Brasil

*bdoboszewski@hotmail.com

Keywords: chiral pool; D-galactose; stereoselective synthesis

INTRODUCTION

terpenes² and aminoacids³ Carbohydrates,¹ chiral-pool substrates widelv used synthesis. D-Galactose is stereoselective convenient compound in this context since it is the only easily available sugar furnishing its derivative, viz. 1, which displays primary OH group in a single protecting step. We reasoned that 1 can be further extended to get 2, which upon degradation would furnish the chiral products 3. The stereogenic center present in 3 is the C5 atom in 1. The objective of this communication is to present preliminary results of such investigation.

RESULTS AND DISCUSSION

The idea presented above was tested as shown in the Scheme 1 and permitted isolation of the expected diol (S)-4.

Scheme 1. C5 atom in the di-O-isopropylidene- α -Dgalactopyranose 1 as a source of chirality in the glycerol 4: a model reaction.

Having confirmed the viability of the concept, an extension at the C6 position in 1 to get 5 and 6 was performed to obtain the substrates for synthesis of the (R) diols 7. The compound 5 was obtained from 1 via oxidation, two carbon atoms extension and hydrogenation. Alternatively, 5 was prepared via substitution at the C6 position using sodium malonate followed by dealquilative decarboxylation (Scheme 2).

1.CrO₃, Py, Ac₂O
2.Ph₃P=CHCO₂Et
51% two steps, Z/E= 3:1
(Z) less polar,
$$J_{67}$$
=11.7Hz
(E) more polar, J_{67} =15.7Hz
3.Pd/C, H₂ ~100%
1.Tf₂O, Py
2.CH₂(CO₂Et)₂, NaH
82% two steps
3.LiBr or Lil, DMSO, ca 145°, 70-85%
Scheme 2. Two atoms extension in 1.

5 was used to get 6 with two more C atoms in a side chain (Scheme 3):

Scheme 3. Four atoms extension in 1.

The compounds 5 and 6 will be used to obtain the targets (R)-7 by analogy to the procedure shown in the Scheme 1.

5/6
$$\Longrightarrow$$
 $(CH_2)_nCO_2Et$
 CH_2OH
 (R) 7 n=2.4

CONCLUSION

C5 atom in D-galactopyranose was used as a source of chirality to obtain the (S) glycerol 4. Side chain extended D-galacto compounds 5 and 6 were obtained. Their application to get the diols (R) 7 will be reported in due course.

REFERENCES

- ¹ Knauer, S.; Kranke, B.; Krause, L.; Kunz, H. Curr. Org. Chem. 2004, 8,
- 1739. ² Liu, W. "Terpenes: The Expansion of the Chiral Pool" *in* "Handbook of Chiral Chemicals"; 2nd ed.; Ager, D. Ed.; CRC Press: Boca Raton, **2005**,
- p.59. ³-Williams, R.M.; Burnett, C.M. *ACS Symp.Ser.* **2009**, *1009*, 420.