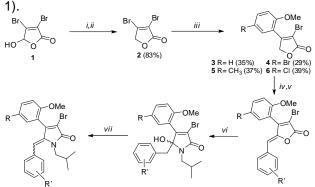


Synthesis of lactones and lactams analogues to rubrolides as inhibitors of Enterococcus faecalis biofilm formation

Ulisses A. Pereira^a, Luiz C. A. Barbosa^{b*}, Célia R. A. Maltha^a, Antônio Jacinto Demuner^a, Andréa de L. Pimenta^{c,d}

^aDepartment of Chemistry, Federal University of Viçosa, Av. PH Rolfs, Viçosa, MG, 36570-000, ^bDepartment of Chemistry, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627, Campus Pampulha, CEP 31270-901, Belo Horizonte, MG, Brazil/^cDepartment of Biologie, ERRMECe, University of Cergy Pontoise, 2, Av. Adolphe Chauvin 95302 Cergy Pontoise - France ^dDepartment of Odontology, Federal University of Santa Catarina 88040-900, Florianópolis, SC *lcab@ufmg.br

Keywords: y-lactams, y-lactones, biofilm


INTRODUCTION

Biofilms are a bacterial communities enclosed within an extracellular matrix capable to survive to antibiotics treatments¹. It has been estimated that 65-80% of the microbial infections occurring in the body biofilm-related. human are Therefore, identifying substances that are able to inhibit biofilm formation constitutes a promising approach for the development of new drugs.

In this work, analogues to rubrolides, a class of natural γ -alkylidene- γ -lactones³, and their corresponding lactams were synthesized and evaluated against E. faecalis biofilm formation.

RESULTS AND DISCUSSION

A sequence of reactions consisting of reduction, Suzuki cross-coupling and alkylidenation allowed the preparation of rubrolides analogues 7-13 (Scheme

21-27 14-20 7-13 i) 1,5 equiv. NaBH₄, MeOH, 0 °C; ii) H₂SO₄ conc., MeOH, 0 °C; iii) ácido borônico, AsPh₃, PdCl₂(MeCN)₂, Ag₂O, THF, 65 °C, 24h; iv) aldeído, TBDMSOTf, DIPEA, DCM; v) DBU, refluxo; vi) isopropilamina, DCM, 0 °C, 3h; vii) p-TsOH,CHCl₃, refluxo, 2h.

R	R'	Comp* (%)	Comp* (%)	Comp* (%)	Comp* (%)
Н	p-CF₃	7 (63)	14 (85)	21Z (36)	21E (39)
Br	m-Cl	8 (44)	15 (78)	22 Z (28)	22E (31)
Br	<i>p</i> -Br	9 (45)	16 (85)	23 Z (23)	23E (33)
CH_3	<i>m</i> -Cl	10 (63)	17 (84)	24Z (35)	24E (45)
CH_3	o-Cl	11 (68)	18 (84)	25 Z (29)	25E (39)
CI	o-Br	12 (58)	19 (76)	26Z (29)	26E (43)
CI	m-OCH ₃	13 (65)	20 (76)	27 Z (41)	27E (35)

Scheme 1. Synthesis of the compounds

These analogues were treated with isobutylamine to prepare the γ -hydroxy- γ -lactams **14-20** in yields ranging from 76% to 85%. These compounds were further dehydrated to generate γ -alkylidene- γ lactams 21-27 as mixture of isomers Z and E that were purified by column chromatography (Scheme 1). The configuration of the exocyclic C5-C6 double bound was secured by NOE difference spectroscopy studies.

The lactones and lactams were evaluated against Enterococcus faecalis biofilm formation. Table 1 present the concentration of each compound necessary to inhibit 50% of biofilm formation (IC_{50}).

The most active groups of compounds were the Z and $E\gamma$ -alkylidene- γ -lactams.

Table 1. Effect of the compounds against E. faecalis biofilm formation

Comp	IC ₅₀ *	Comp	IC ₅₀ *	Comp	IC ₅₀ *	Comp	IC ₅₀ *			
7	*	14	*	21 Z	12,0±4,6	21 E	3,0±0,7			
8	6,9±1,7	15	>87,5	22 Z	3,3±1,3	22 E	3,5±0,2			
9	18,7±5,1	16	33,4±17,0	23 Z	6,6±0,4	23 E	3,4±0,4			
10	1,5±0,1	17	>87,5	24 Z	62,6±9,7	24E	59,3±11,1			
11	*	18	1,1±0,1	25 Z	1,1±0,3	25E	1,0±0,2			
12	>87,5	19	1,3±0,2	26 Z	1,5±0,1	26 E	0,76±0,2			
13	53,1±16,7	20	>87,5	27 Z	1,5±0,3	27 E	3,3±1,5			
*IC ₅₀ v	IC ₅₀ values expressed in μg/mL.									

CONCLUSION

Seven analogues to rubrolides were prepared and then converted into their corresponding lactams through the two-step lactamization. The evaluation of these compounds against E. faecalis biofilm formation showed that all these groups of compounds are very active, with the γ -alkylidene- γ lactams amongst the most actives.

ACKNOWLEDGEMENTS

CAPES, UFV, CNPq, FAPEMIG

REFERENCES

Musk Jr, D. J.; Hergenrother, P. J. Curr. Med. Chem., 2006, 13, 2163.

² Davies, D. *Nat. Rev. Drug Discov.*, **2010**, *2*, 114.
³ Miao, S.; Andersen, R. J. *J. Org. Chem.*, *56*, **1991**, 6275.

15th Brazilian Meeting on Organic Synthesis – 15th BMOS – November 10-13, 2013 - Campos do Jordão, Brazil