

Synthesis of novel [2]rotaxanes using hydrogen-bonding template

Letícia V. Rodrigues^{a*}, Lilian Buriol^a, Clarissa P. Frizzo^a, José Berná^b, Mateo Alajarín^b, Marcos A. P. Martins^a

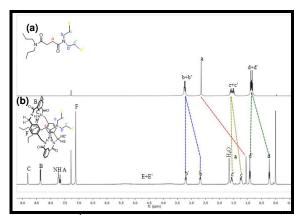
^aDepartamento de Química. Universidade Federal de Santa Maria. 97105-900 Santa Maria-RS. Brazil ^bDepartamento de Química Orgánica, Universidad de Murcia, Campus de Espinardo, Murcia-30100, Spain. * leticiavalvassori@hotmail.com

Keywords: [2]rotaxanes, multicomponent reaction, molecular machines.

INTRODUCTION

[2]rotaxanes are mechanically interlocked molecules which and are employed in the development of new electronic devices. Due to their characteristic of controlling motion (pirouetting or shuttling) the [2]rotaxanes have received much scientific interest over the last decade, especially in the development of biological machines.^{1,2} Thus continuing our work³ in this exciting area of chemistry, the aim of this study is to show the synthesis of novel [2]rotaxanes models which can later be used in molecular dynamics studies.

RESULTS AND DISCUSSION


The four novel [2]rotaxanes models were prepared by self-assembly with post-modification process through multicomponent reaction (five components). In the reactions were used different succinamides templates for the formation of amide macrocycles. In the **Scheme 1** are showed synthesis of [2]rotaxanes which exhibited different structural variations in the stoppers.

R = Pr, i-Pr, Bu, i-Bu $i = \text{Et}_3\text{N}, \text{CHCl}_3, 16 \text{ h}, 25 ^{\circ}\text{C}, 17 - 29 \%$

Scheme 1. Synthesis of [2]rotaxanes

The [2]rotaxanes were characterized by ¹H NMR spectra through chemical shift differences between the thread and the [2]rotaxanes. In the Figure 1 are showed the ¹H NMR spectra of (a) thread (R = Pr) and (b) [2]rotaxane (R = Pr). It is possible to establish the significant upfield shifts (e.g., $\delta = 0.23$. 1.24, and 2.69 ppm) corresponding to the signal of hydrogens H_d, H_c, and H_b of the Pr group. The assignment is due to proximity of the meta-diamide portion of the macrocycle to the structural fragments.

Additional indication of the formation of [2]rotaxane is given by chemical shift of macrocyclic methylene, $H_{\text{E-axial}}$, and $H_{\text{E'-equatorial}}$ ($\delta = 3.79-5.46$ ppm), which are associated with the pirouetting motion between the two subunits.3

1. ¹H NMR spectra of (a) Figure tetrapropylsuccinamide and (b) [2]rotaxane.

CONCLUSION

In summary, we report the efficient synthesis of four [2]rotaxanes. These new compounds can be used of molecular dynamics of this rotation studies. In addition they will also use as potential models for structural and supramoleculares studies.

ACKNOWLEDGEMENTS

This work was supported by CNPq, CAPES, FAPERGS and MICINN. Acknowledges: L.B. -FAPERGS (Project - ARD-Proc.No.2/0826-3); L.B. and L.V.R. - CAPES; M.A.P. Martins - CNPg; J.B. -MICINN for a Ramón y Cajal contract, co-financied by the European Social Fundand the support of the projects CTQ2008-05827/BQU and CTQ2009-12216/BQU.

REFERENCES

 Stoddart, J. F. *Chem. Soc. Rev.* **2009**, *38*, 1802.
Kay, E. R.; Leigh, D. A.; Zerbetto F. *Angew. Chem. Int. Ed.* **2007**, *46*, 72.
Berná, J.; Alajarín, M.; Martínez-Espín, J. S.; Buriol, L.; Martins, M. A. P.; Orenes, R.-A. Chem. Commun. 2012, 48, 5677.