

Oxireduction's Studies of Arytetralone and Aryltetralol Mediated by *Rhodotorula* sp

Marina G. Capeletto^{a*}, Luiz S. Longo Jr^a, Wagner L. Batista^a, Graziela G. Bianco^a

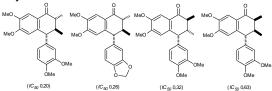
^aUniversidade Federal de São Paulo – Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF) Diadema, São Paulo, Brasil.

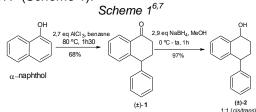
*capelettomari@bol.com.br

Keywords: aryltetralone, aryltetralol, oxireduction

NTRODUCTION

The Aristolochiaceae family presented extracts with antimalarial activity. Some aryltetralones lignans were isolated from *Holostylis reniformis* (Figure 1) and those are responsible for this antimalarical activity.^{1,2}



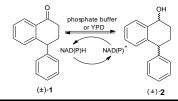

Figure 1: Aryltetralones isolated from Holostylis reniformis.

Biocatalysis has been shown to be a strong strategy to obtain enantiomerically pure substances, because it promotes reactions with high chemo-, regio- and stereoseletivity.³

This methodology show to be important because it's environmentally favorable, since various principles of Green Chemistry may be contemplated like possibility of using water as a solvent, especially when we using whole cells. These whole cells contain all necessary cofactors to promote the desired reaction and they are able to recycle them.^{4,5}

RESULTS AND DISCUSSION

The aryltetralone (1) was synthesized by a Friedel-Crafts' reaction between α -naphthol and benzene, in the presence of AlCl₃.⁶ The aryltetralol (2) was obtained by reduction of (±)-1 with NaBH₄ and MeOH⁷ (Scheme 1).



The (±)-1 and (±)-2 were submitted to reactions with *Rhodotorula* sp. This yeast was able to reduce α -tetralones with a substituent in 4-position.⁸ The results are shown in Table 1. The bioreduction reactions occur with *Rhodotorula* sp, but the amount formed wasn't sufficient to be isolated, except in YPD. A higher yield was found in 24 h (Entry 4). The

formation of both alcohols, *cis*-2 and *trans*-2, occurred, except in 44 h in PBS (Entry 2).

The bio-oxidation reaction of (\pm) -2 occurs and it seems more promising than bioreduction because the isolation of 1, using column chromatography, was possible.

Table 1: Results of Reactions with Rhodotorula sp.^a

Entry	Compound	Time	Cromatogram (%)
1	(±)-1	22 h	1 (32%) <i>cis-</i> 2 (1%) <i>trans-</i> 2 (3%)
2		44 h	1 (46%) <i>trans-</i> 2 (1%)
3 ^b		8 h	1 (30%) cis- 2 (12%) trans- 2 (10%)
4 ^b		24 h	1 (39%) cis- 2 (18%) trans- 2 (22%)
5 ^b		48 h	1 (62%) cis- 2 (7%) trans- 2 (11%)
6 ^b	(±)- 2	24 h	1 (28%) <i>cis-</i> 2 (55%) <i>trans-</i> 2 (17%)

Reagents and Condictions:^a Growth: 250 mL of YPD – Yeast Extract-Peptone-Dextrose Broth (pH = $6,5 \pm 0,2$), 150 rpm, 26 °C, 24 h or 48h. Yeast mass: 40 mL of YPD centrifuged at 1200 rpm, 5 minutes, 25 °C. Reaction: 40 mL PBS - Phosphate Buffered Saline or YPD, yeast mass, 0,4 mmol of (±)-1 or (±)-3, 150 rpm, 26 °C, time. Extraction: 3 x 20 mL of ethyl acetate. Co-solvent: dimethyl carbonate. ^bThese reactions occur directly in YPD.

CONCLUSION

The *Rhodotorula* sp was able to make the reduction of (\pm) -**1** and oxidation of (\pm) -**2**, although with low yields.

ACKNOWLEDGEMENTS

UNIFESP, FAPESP, CAPES, CNPq.

REFERENCES

¹El-Tahir, A. et al. Phytother. Res. **1999**, *13*, 474. ²Andrade-Neto, V. F. et al. Antimicrob. Agents Chemother. **2007**, *51*, 2346. ³Garcia-Urdiales, E.; et al. Chem. Rev. **2005**, *105*, 313.⁴Poliakoff, M.; et al. Science **2002**, *297*, 807.⁵ Matsuda, T.; et al. Tetrahedron-Asymmetry, **2009**, *20*, 513.⁶Vukics, K. et al. Org.ProcessRes.Dev.**2002**, *6*,82.⁷Bianco, G.G. Tese de doutorado. Universidade de São Paulo, Brasil, **2008**.⁸Bégué, J.P. et al, J. Chen. Soc. Perkin Trans *1*, **1992**, 3141.

15th Brazilian Meeting on Organic Synthesis – 15th BMOS – November 10-13, 2013 - Campos do Jordão, Brazil