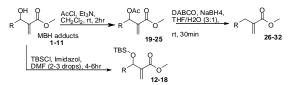


Syntheses of β-hydroxy-α-amino esters and non-proteinogenic α-amino acids from Morita-Baylis-Hillman adducts.

Hamid Ullah, Andre V. Ferreira, Manoel T. Rodrigues Jr and Fernando Coelho* Laboratory of Synthesis of Natural Products and Drugs, Institute of Chemistry, State University of Campinas,

UNICAMP, 13084-971, Campinas, SP, Brazil. *coelho@iqm.unicamp.br

Keywords: Morita-Baylis-Hillman reaction, Amino esters, Amino acids


INTRODUCTION

 β -hydroxy- α -amino esters are found in various bioactive natural.¹ On the other hand non proteinogenic amino acids play a vital role in the syntheses of various bioactive compounds and drugs. For example "DOPA" is employed against Parkinson's disease.² Thus, both of their biological and synthetic role make them attractive for synthetic and medicinal community. Thus the goal of our work is a diastereoselective syntheses of the β -hydroxy- α -amino esters, non-proteinogenic amino acids including racemic "DOPA" from MBH adducts.

RESULTS AND DISCUSSION

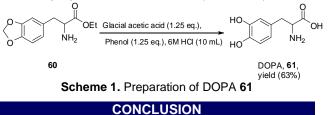
Our work begins with preparation of MBH adducts 1-11.³ Then the adducts 1-7, were silvlated to give products 12-18 and the adducts 3, 4, 6 and 8-11 were acetylated² to give products 19-25. The later (19-25) were deacetylated to provide metacrylate derivatives 26-32 (Table 1).

 Table 1. Syntheses of silvlated and deacetylated adducts.

MBH Adduct	Silylated MBH, %	MBH Adduct	Acet. MBH, %	Prod. %
1, 6-Br-Piperonyl	12 , 92	3, 4- ^{<i>t</i>} Bu-Ph	19 , 81	26 , 94
2, 4-OMe-Ph	13 , 91	6, 3-Cl-Ph	20 , 92	27 , 95
3, 4- ^t Bu- Ph	14 , 90	8, 4-Cl-Ph	21 ,75	28 , 93
4 , Ph	15 , 93	9 , 4-Br-Ph	22 , 87	29 , 94
5, Ethyl	16 , 85	10, 3,4,5- OMe-Ph	23 , 71	30 , 90
6, 3-Cl-Ph	17 , 94	4 , Ph	24 , 70	31 , 93
7, 4-NO ₂ -Ph	18 , 95	11 ,Piperony I	25 , 75	32 ,89

Subsequently, Ozonolysis³ and Oximation⁴ of compound **12-18** and **26-32** gave oximes **33-39** and **40-46**, respectively. These oximes were reduced⁵ to provide β -hydroxy-amino-esters **47-53** in high

diastereoselectivity (*anti:syn* >95:5) and aminoesters **54-60**, respectively (Table 2).


Table. 2. Preparation of oximes, amino esters andamino acids.

R'= OTBS, **12-18**, R= OTBS, **33-39** R= OTBS, R"= Me, **47-53** R= H, **26-32** , R'= H, **40-46** R'.R"= H. **54-60**

Cpds	Oxime, %	Amino* ester,%	Cpds	Oxime ,%	Amino acid,%
12	33 , 92	47 , 88	26	40 , 94	54 , 64
13	34 , 91	48 , 95	27	41 , 95	55 , 65
14	35 , 90	49 , 93	28	42 , 91	56 , 61
15	36 , 93	50 , 93	29	43 , 90	57 , 63
16	37 , 85	51 , 91	30	44 , 94	58 , 64
17	38 , 94	52, 96	31	45 , 92	59 , 59
18	39 , 95	53, 80	32	46 , 88	60 , 52

*The diastereoselectivity was determined by analysis of H¹ NMR of the crude reaction mixture

The above methodology allowed us to develop an efficient preparation of the DOPA (scheme 1).

We prepared *anti*- β -hydroxy- α -aminoesters **47-53**, amino acids **54-60** and DOPA **61 using a new apparoach**.

ACKNOWLEDGEMENTS

We thanks CNPq, Capes and FAPESP for financial support.

REFERENCES

¹Ludlow, B. S.; Villo, P.; Somfai, P. *Chem. Eur. J.* **2012**, *18*, 7219. ²Kasperkiewicz, P.; Gajda, A. D.; Drag. M.; *Biol. Chem.*, **2012**, *393*, 843. ³Paioti, P. H. S.; Rezende, P.; Coelho, F. *J. Braz. Chem. Soc.* **2012**, *23*, 285. ⁴Ritson, D. J.; Cox, R. J.; Berge. J. *Org. Biomol. Chem*. **2004**, *2*, 1921. ⁵ Kouhkan, M.; Zeynizadeh, B. *Bull. Korean Chem. Soc.* **2011**, *32*, *3323*.

15th Brazilian Meeting on Organic Synthesis – 15th BMOS – November 10-13, 2013 - Campos do Jordão, Brazil