

Synthesis and characterization of novel phosphinamide bidentate ligands with groups P=O, P=S and P=Se: Application in coordination chemistry with Zn⁺⁺

Neidemar de M. S. Bastos^{*},^a Júlia T. de Macedo,^a Marcos C. de Souza,^a Gilberto A. Romeiro,^a Jackson A. L.C. Resende,^a María J. Iglesias,^b Fernando L. Ortiz,^b María Casimiro,^b Maria C. R. Freitas.^a

^a Dep. de Química Orgânica, Universidade Federal Fluminense, Instituto de Química, Rio de Janeiro, Brasil

^b Área de Química Orgánica, Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain. **neidemar.moura@gmail.com*

Keywords: ortho-lithiation, phosphinic amides and hemilabile ligands.

INTRODUCTION

Hemilabile ligands possessing two or more donor atoms with very different electronic properties close to the metal represent a very active research field. The binding of the metal to a chelating ligand containing hard and soft donor atoms allows for the easy displacement of the labile group providing access to an open coordination site in a reversible manner. These features make hemilabile ligands very interesting in a number of fields including coordination chemistry and metal complex catalvsis.1 The current work presents а comprehensive study on the synthesis of novel phosphinamide bidentate ligands 3a-c employing directed *ortho*-lithiation methodology^{2,3} (Scheme 1) and subsequent complexation with zinc chloride.

RESULTS AND DISCUSSION

Intermediate **2** was obtained in 90% yield by *ortho* lithiation of the diphenylphosphinamide **1** at low temperature followed by coupling with chloro diphenylphosphine as the eletrophile. Oxidation of the phosphino group *in situ* with H_2O_2 , S and Se gave rise to the hemilabil bidentate ligands **3a-c** in yields ranging from 60-90% (Scheme 1).

Scheme 1. Synthesis of ligands (**3a-c**) through transformations of *ortho*-functionalized phosphinic amides.

Table 1 shows the characterization of the three compounds by ³¹P-NMR and HRMS. Single crystals of **3b** and its complex with $ZnCl_2$ were obtained through slow vapors diffusion of diethyl ether into a solution containing the compound in CH_2Cl_2/ACN (1:1) and are represented in Figure 1.

Table 1. Characterization of ligands **3a-c** by ³¹P-NMR and HRMS (ESI).

Ligands	³¹ P-NMR δ (ppm)	HRMS (ESI)
3a	28.70 (d, ³ J _{PP} 4.4 Hz, P=O),	502.2020 (MH ⁺),
	50.71 (d, ³ J _{PP} 4.7 Hz, P=S).	found: 502.2066.
3b	28.70 (d, ³ J _{PP} 4.4 Hz, P=O),	518.1792 (MH⁺),
	50.71 (d, ³ J _{PP} 4.7 Hz, P=S).	found: 518.1813.
3c	28.46 (d, ³ J _{PP} 4.0 Hz, P=O),	566.1281 (MH ⁺),
	42.38 (d, ³ J _{PP} 4.0 Hz, P=Se).	found: 566.1288.
Crystal data:		

Ligand 3b ($C_{30}H_{33}NP_2OS. CH_3CN$): Triclinic; P-1; a=9.1412(13); b=9.8502(17); c= 17.910(4) Å; α =93.263(18)°; β =94.429(17)°; γ =109.92(2)°; n^o reflections/parameters = 5481/334; R₁=4,8%; S = 0,92. Temperature 298K.

Complex 3b-Zn ($C_{30}H_{33}NP_2OSZnCl_2$): Monoclinic; P2₁/c; a=10.7119(3); b=15.7322(7); c=18.1799(7)Å; β =93.429(3)°; n^o reflections/parameters = 5572/343; R₁=3,1%; S = 1,15. Temperature 100K.

Figure 1: Representation of crystalline structure of ligand 3b (a) and its Zn complex (b).

CONCLUSION

The bidentate ligands **3a-c** were obtained in good yields and unequivocal characterization. X-ray analysis for **3b** and **3b-Zn** showed distortion of the phenyl group, as well as the change from monoclinic crystal system to triclinic, respectively.

ACKNOWLEDGEMENTS

CAPES- DGU, CNPq-PIBIC

REFERENCES

15th Brazilian Meeting on Organic Synthesis – 15th BMOS – November 10-13, 2013 - Campos do Jordão, Brazil

¹ Motta, A.; Fragal, I. L.; Marks T. J. *Organometallics* **2010**, *29*, 2004, ² García-López, J.; Fernández, I.; Serrano-Ruiz, M. López-Ortiz, F. Chem. Commun. **2007**, 4674.

 ³ Popovici, C.; Oña-Burgos, P.; Fernández, I.; Roces, L.; García-Granda, S.; Iglesias, M. J.; López-Ortiz, F. Org. Lett. 2010, 12, 428.