

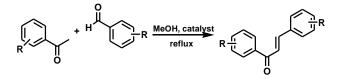
Preparation of New Prenylated (E)-Chalcones

*Mariana Bastos dos Santos^ª, Fernanda Patricia Gullo^b, Luiz Antonio Dutra^b, Maria José Soares Mendes-Giannini^b, Ana Marisa Fusco-Almeida^b, Luis Octávio Regasini^ª

^aDepartamento de Química e Ciências Ambientais - Instituto de Biociências, Letras e Ciências Exatas - São José do Rio Preto - UNESP; ^bDepartamento de Análises Clínicas – Faculdade de Ciências Farmacêuticas -

Araraquara - UNESP

*mariana19bsantos@gmail.com


Keywords: prenylated chalcones, prenylation, Claisen rearrangements.

INTRODUCTION

Chalcones comprise one of the main classes of natural products, and their structure is an interesting scaffold for different chemical modifications, including the functional group interconversions.^{1,2} Among the different groups that are correlated to bioactivity of chalcones, the side prenyl chains seem to be related to plasmatic membrane anchorage. For this reason, we have synthesized a series of 20 new *O*-prenylated chalcones, including isoprenylated, geranylated and farnesylated derivatives. In addition, these compounds were evaluated as antifungal agents.

RESULTS AND DISCUSSION

The (*E*)-chalconic building block preparation was carried out by Claisen-Schmidt aldol reaction, under basic or acid catalysis, generating monohydroxylated chalcones (Figure 1).

Figure 1. Preparation of *(E)*-chalconic building blocks (catalyst = H_2SO_4 or NaOH; R = H or hydroxyl)

For preparation of the prenylated (*E*)-chalcone derivatives was used alkylation reactions with terpenyl bromides in alkaline medium, and reflux (Figure 2).

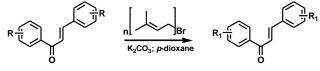
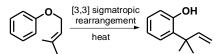



Figure 2. Preparation of prenylated (*E*)-chalcones [R=H or hydroxyl; R_1 = H, isoprenyl (n = 1), geranyl (n = 2) or farnesyl (n = 3)]

In general, the preparation of the monohydroxylated chalcones demonstrated yields between 56% and 86%, and the prenylated chalcones were obtained in satisfactory yields (57%-92%). Despite the formation of the designed O-prenylated chalcones, some Cprenylated derivatives as byproducts from Claisen rearrangements were detected, requiring additional including purification steps, Column Chromatography and Preparative Thin Laver Chromatography.

Figure 3. Conversion from *O*-prenylated chalcone to *C*-prenylated chalcone via Claisen rearrangement

3-O-Geranyl-chalcone (1) and 3-O-farnesyl chalcone (2) demonstrated potent antifungal activity against *Paracoccidioides* species, exhibiting MIC values ranging from 0.48 to $3.90 \ \mu g.mL^{-1}$.

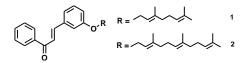


Figure 4. Antifungal 3-O-prenylated chalcones

CONCLUSION

In conclusion, the current work described the preparation of 20 new chalcones with satisfactory yields. Among these, 3-*O*-prenylated compounds (1 and 2) showed potent anti-*Paracoccidioides* activity.

ACKNOWLEDGEMENTS

CAPES, PROPG, FAPERP, PROAP and Unesp for supporting the present work.

REFERENCES

¹ Chetana, B. P.; Mahajan, S. K.; and Survana, A. K., *J. Sci. Res.* 2009, *1*,

^{11.} ² Dong, X.; Chen, J.; Jiang, C.; Liu, T. and Hu, Y. *Arch. Pharm. Chem. Life Sci.* **2009**, 342, 428.

15th Brazilian Meeting on Organic Synthesis – 15th BMOS – November 10-13, 2013 - Campos do Jordão, Brazil