

Microwave-assisted synthesis and antifungal activity of calix[4]aldimines

Cleiton M. da Silva¹*, Thais F.F. Magalhães², Danielle L. da Silva², Rosemeire B. Alves¹, Maria A. de Resende-Stoianoff², Ângelo de Fátima¹

¹Grupo de Estudos em Química Orgânica e Biológica (GEQOB), Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.

²Departamento de Microbiologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.

*E-mail corresponding author: cleitonms@ufmg.br

Keywords: calixarene, aldimine, antifungal activity.

INTRODUCTION

Calixarenes are macrocyclic compounds formed of phenolic units linked by methylene bridges in *ortho* positions. In last decades these compounds have received increasing attention due to its technological and biological applications, particularly as platforms for the development of new drugs¹. Aldimines are organic substances known to exhibit a broad range of biological properties that includes antifungal, antibacterial, antimalarial, anti-inflammatory and antiviral activities². Here we report the microwave-assisted synthesis of six calix[4]aldimines and their respective monomeric units. The antifungal activities of such compounds against six strains of *Candida* species are also described.

RESULTS AND DISCUSSION

The calix[4]aldimines **6-11** and the aldimines **14-19** were obtained according to the synthetic approach shown in Schemes 1 and 2.

Scheme 1. Synthesis of calix[4]aldimines **6-11**. i) diphenyl ether, NaOH, 260°C, 56%; ii) AlCl₃, toluene, r.t., 80%; iii) NaH, *n*-BuBr, DMF, 80°C, 60%; iv) HOAc/HNO₃, r.t., 54%; v) N₂H₄.H₂O, Pd/C, EtOH, 80°C, 99%; vi) ArCHO, EtOH, microwave irradiation, 52-90%.

Scheme 2. Synthesis of the aldimines **14-19**. i) K_2CO_3 , n-BuBr, MeCN, $80^{\circ}C$, 94%; ii) $N_2H_4.H_2O$, Pd/C, EtOH, $80^{\circ}C$, 99%; iii) ArCHO, EtOH, microwave irradiation, 69-88%.

The minimum inhibitory concentration (MIC) for each synthesized compound was determined according to

the protocol M27-A2³. The results are shown in Table 1. In general, both the calix[4]aldimines and aldimines presented moderate activity against the fungi studied. Among all the compounds evaluated, the calix[4]aldimine **11**, derived from 5-nitrofurfuraldehyde, was the most active, with MIC values of 0.05 mmol.L⁻¹ against *C. albicans*, *C. krusei*, *C. tropicalis*, *C. parapsilosis and C. dubliniensis*.

Table 1. Minimal inhibitory concentration (MIC; mmol.L⁻¹) of the compounds **6-11** and **14-19** against fungal strains

Fungal strains ^a	Compounds												
	6	7	8	9	10	11	14	15	16	17	18	19	Flu ^b
C.a.	0.48	0.45	0.41	0.45	0.41	0.05	2.02	1.90	1.72	3.77	3.44	1.78	0.0008
C.k.	0.48	0.23	0.21	0.23	0.21	0.05	1.01	1.90	0.86	3.77	1.72	0.22	0.10
C.t.	0.48	0.45	0.41	0.45	0.41	0.05	4.04	3.80	3.43	3.77	3.44	1.78	0.0008
C.p.	0.24	0.11	0.21	0.23	0.41	0.05	1.01	0.48	0.43	3.77	1.72	1.78	0.007
C.g.	0.48	0.23	0.21	0.45	0.41	0.11	4.04	0.95	3.43	3.77	3.44	1.78	0.03
C.d.	0.24	0.45	0.21	0.23	0.41	0.05	2.02	1.90	1.72	3.77	1.72	0.89	0.0008

^aFungal strains: *C. albicans* (C.a.); *C. krusei* (C.k.); *C. tropicalis* (*C.t.*); *C. parapsilosis* (C.p.); *C. glabrata* (C.g.); *C. dubliniensis* (C.d.). ^bFlu stands for fluconazole (positive control).

CONCLUSION

Six calix[4]aldimines, as well as the respective monomeric units were synthesized and evaluated for their antifungal activities. *In vitro* assays showed that calix[4]aldimine **11** is an interesting lead compound for the development of new antifungal agents.

ACKNOWLEDGEMENTS

The authors thank FAPEMIG, CAPES and CNPq for financial support.

REFERENCES

¹ de Fátima, A.; Fernandes, S. A.; Sabino, A. A. *Curr. Drug. Discov. Tech.* **2009**, *6*, 151.

² da Silva, C. M.; da Silva, D. L.; Modolo, L. V.; Alves, R. B.; Martins, C. V. B.; de Resende, M. A.; de Fátima, A. *J. Adv. Res.* 2011, 2, 1.
³ Clinical and Laboratory Standards Institute. Reference Method for Broth

³ Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. Approved standard, 2nd ed. NCCLS document M27-A2. Villanova: Clinical and Laboratory Standards Institute. 2002.

15th Brazilian Meeting on Organic Synthesis – 15th BMOS – November 10-13, 2013 - Campos do Jordão, Brazil