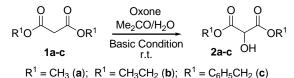


α-Hydroxylation of malonates under mild reaction conditions

Marcos M. Peterle*, Marcelo V. Marques and Marcus M. Sá

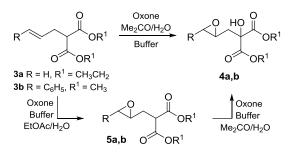
Departamento de Química, Universidade Federal de Santa Catarina (UFSC), Florianópolis/SC, 88040-900

*marcos.maragno@gmail.com


Keywords: Malonates, hydroxylation, oxone.

INTRODUCTION

Peroxysulfuric acid and its potassium salt have been known as oxidizing agents for some time. The potassium peroxymonosulfate salt, sold under the commercial name Oxone[®] (2KHSO₅·KHSO₄·K₂SO₄), is a very stable substance and can be easily handled. Oxone has been used in the oxidation of alcohols and C-H bonds, and also in the epoxidation of olefins.¹ In this work, we present a simple method to prepare α hydroxy malonates of synthetic interest.


RESULTS AND DISCUSSION

For unsubstituted malonates **1a-c** (Scheme 1), the hydroxylation of the α -carbon was achieved in a short period (15 to 60 minutes) using the mild conditions² presented in Table (entries 1-3). The ¹H NMR data show good conversion to the products **2a-c**, although the recovery of **1a** and **1b** was difficult due to their solubility in water.

Scheme 1. Hydroxylation of unsubstituted malonates 1.

Malonates containing double bonds tethered to the α carbon, such as allyl (**3a**) and cinnamyl (**3b**), underwent epoxidation and hydroxylation in a single step (Scheme 2 and Table, entries 4 and 5).

Scheme 2. Hydroxylation and epoxidation of allyl- (3a) and cinnamyl-substituted malonates (3b).

The hydroxylation of the allyl-substituted malonate **3a** was not complete within 48 hours, giving a 1:1 mixture of epoxide **5a** and hydroxylated epoxide **4a**. With cinnamyl-substituted malonate **3b**, the epoxidation with α -hydroxylation occurred faster (4

hours) and with better conversion than with **3a**. Epoxides **5a** and **5b** were also suitable starting materials for the synthesis of α -hydroxylated epoxides **4a,b** under basic condition (for example, entry 6). The utilization of phosphate buffer is due to its ideal pH for the reaction with oxone (pH ~ 8,0)¹ and the maintenance of the pH even when 2.5 equiv. Oxone was employed.

The hydroxylated epoxide **4b** is of synthetic interest as the building block for the short synthesis of the natural product harzialactone³ (**6**, Scheme 3).

$$4b \xrightarrow{[H]} Ph \xrightarrow{HO} OR^1 \xrightarrow{OH} Ph \xrightarrow{OH} OR^1 \xrightarrow{OH} OH$$

Scheme 3. Synthesis of harzialactone (6) from 4b.

#	Malonate	Oxone	Basic	Prod.	Conv.
		(Equiv.)	Cond.		(%) a
1	1a	1.3	NaHCO₃ ^b	2a	100
2	1b	1.3	NaHCO ₃ ^b	2b	100
3	1c	1.3	NaHCO ₃ ^b	2c	100
4	3a	2.5	Buffer ^c	4a	50 ^d
5	3b	2.5	Buffer ^c	4b	100
6	5a	1.3	Buffer ^c	4a	100

^a Conversion was determined by ¹H NMR integration (200 MHz).

^b 4.7 equiv. of base was employed. ^c Buffer = 1 mol L⁻¹ K₂HPO₄/KH₂PO₄, pH 8.

^d Formation of the hydroxylated epoxide **4b**.

CONCLUSION

The hydroxylation of malonates **1** and **3** at the α carbon was achieved under mild conditions. The substituted malonates required buffer basic condition due to its better pH maintenance, giving hydroxylated epoxides **4**. The optimization of the reaction conditions and the extension of this method to other substrates are under investigation.

ACKNOWLEDGEMENTS

INCT-CATÁLISE, CAPES, CNPq

REFERENCES

- ¹ Hussain, H.; Green, I. R.; Ahmed, I. *Chem. Rev.* **2013**, *113*, 3329.
 ² Marques, M. V.; Oliveira, C. C.; Correia, C. R. D.; Sá, M. M. *Abstract from*
- 4th IICGC, 2012, Foz do Iguaçu, Brazil.
- ³ Kumar, D. N.; Reddy, C. R.; Das, B. Synthesis 2011, 3190.

15th Brazilian Meeting on Organic Synthesis – 15th BMOS – November 10-13, 2013 - Campos do Jordão, Brazil