

# Diastereoselective synthesis of dihydroquinolines and tetrahydroguinolines from Morita Baylis-Hillman adducts

# Manoel T. Rodrigues Jr., Andre Capretz Agy, Danilo Machado Lustosa and Fernando Coelho\*

Laboratório de Síntese de Produtos Naturais e Fármacos, Instituto de Química, Universidade Estadual de Campinas-UNICAMP, Caixa Postal 6154, 13083-970, Campinas-SP-Brazil

\*coelho@igm.unicamp.br

Keywords: Morita-Baylis-Hillman Reaction, dihydroguinolines and tetrahydroguinolines.

### INTRODUCTION

The quinolone, dihydroquinolines and tetrahydroquinolines unities are present in many natural and synthetic compounds. These nuclei exhibit a wide spectrum of medicinal properties, such as antimalarial, antitumor, antibacterial, antithrombin, and many others.<sup>1</sup> Due to this biological profile several synthetic approaches have been known for the preparation of these heterocycles.<sup>2</sup> In this work we disclosed a facile method to prepare quinolines derivatives through a Morita-Baylis-Hillman adduct. Our approach is based on a tandem sequence involving a Michael addition reaction and a  $S_N$ Ar reaction.

### **RESULTS AND DISCUSSION**

2-Bromo-3-nitrobenzaldehyde (3) was prepared according to a procedure described in literature. Acid 1 was reduced in the presence of BH<sub>3</sub>.SMe<sub>2</sub> to afford alcohol 2 (Scheme 1). Oxidation of the alcohol 2 to aldehyde was accomplished using PCC, in 91% overall yield (2 steps). MBH adduct 4 was prepared using a protocol developed by our group.<sup>3'</sup> In brief, aldehydes were treated with methyl acrylate to provide the corresponding MBH adduct in 98% yield. Compound 4 was therefore silvlated in the presence of TBSOTf to give silvlated derivative 5, in 95% yield (Scheme 1).



Scheme 1. Preparation of aldehyde 3 and MBH adduct 4 and silvlation of the MBH adduct. a) BH<sub>3</sub>. SMe<sub>2</sub>, rt, 12h; b) PCC, CH<sub>2</sub>Cl<sub>2</sub>, rt, 12h (91% - 2 steps); c) Methyl acrilate, DABCO, ))), 24h, 98%; d) TBSOTf, CH<sub>2</sub>Cl<sub>2</sub>, rt, 2h, 95%.

A solution of the silvlated MBH adduct 5 in methanol was treated, under reflux, with amine (1.2 eq.) in the presence of triethylamine (acting as a base) to give

the substituted quinolines derivatives in good syn diastereoselectivity (syn/anti) and yields (Table 1).

Table 1 Synthesis of dihydro- and tetrahydroquinolines

| Table 1. Cynthesis of anydro and tetranydroquinomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                              |                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------|--------------------------------------------------|
| 5 $\xrightarrow{\text{amine}}_{\text{Et_3N, MeOH}}$ + $\xrightarrow{\text{OTBS}}_{\text{NO}_2 \text{R}}$ + |                                        |                              |                                                  |
| Entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R                                      | 6a-e<br>Yield <sup>a</sup> % | 7a-e<br>Yield % ( <i>syn:anti</i> ) <sup>b</sup> |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CH₂Ph                                  | 6a, 35                       | 7a, 60 (11:1)                                    |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (CH <sub>2</sub> ) <sub>2</sub> indoyl | 6b, 42                       | 7b, 53 (13:1)                                    |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $(CH_2)_2C_6H_4OMe$                    | 6c, 43                       | 7c, 53 (12:1)                                    |
| 4 <sup>c</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CH <sub>2</sub> Ph(OMe) <sub>3</sub>   | 6d, 48                       | 7d, 35 (11:1)                                    |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $CH_2CH=CH_2$                          | 6e, 43                       | 7e, 52 (13:1)                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                              |                                                  |

<sup>a</sup>Yields refer to isolated purified products. <sup>b</sup>Diastereoselectivity was determined by <sup>1</sup>H NMR, by measuring the coupling constant of the carbinolic proton.<sup>c</sup> Entry 4: we observe a product degradation.

The formation of compounds 6a-e can be explained by a S<sub>N</sub>2' displacement reaction of silvlated MBH 5 with amine followed by cyclization. Otherwise, the high diastereoselectivity attained in the preparation of compounds 7a-e can be explained by the control exerted by the voluminous silvl group. Previous results described by our group support this proposition. Unfortunately all chromatographic attempts to separate the diastereoisomers failed.

## CONCLUSION

In summary, we have demonstrated that dihydroand tetrahydroquinolines can be easily prepared in good yields and diastereoselectivity from MBH adducts.

#### ACKNOWLEDGEMENTS

We thank FAPESP, CNPq and CAPES for financial support.

#### REFERENCES

Kaur, K.; Jain, M.; Reddy, R. P.; Jain, R. Eur. J. Med. Chem. 2010, 45, 3245. <sup>2</sup>Madapa, S.; Tusi, Z.; Batra, S. Curr. Org. Chem. **2008**, 12,1116. <sup>3</sup> Coelho, F.; Almeida, W. P.; Mateus, C. R.; Feltrin, M.; Costa, A. M. *Tetrahedron* **2001**, *57*, 6901. <sup>4</sup>. Rodrigues Jr., M. T.; Gomes, J. C.; Smith, J.; Coelho, F. Tetrahedron Lett. 2010, 51, 4988.

15<sup>th</sup> Brazilian Meeting on Organic Synthesis – 15<sup>th</sup> BMOS – November 10-13, 2013 - Campos do Jordão, Brazil