

PEG: An Efficient Green Solvent for Organocatalytic Asymmetric Michael Addition

Karla S. Feu, * Sandrina I. R. M. Silva, Marco A. F. M. Junior, Alexander F. de la Torre, Arlene G. Corrêa, Márcio W. Paixão

Federal University of São Carlos, São Carlos - São Paulo - Brazil

*karlafeu@gmail.com

Keywords: Michael addition, asymmetric organocatalysis, PEG.

INTRODUCTION

Green chemistry strongly influences chemical research, and there is still a big challenge respecting the requirement to use 'greener' reaction conditions. An important aspect of this field is the replacement of volatile organic solvent by non-flammable, non-volatile, non-toxic and inexpensive "green solvents". In this regard, polyethylene glycol polymers (PEGs) have also been considered as a new class of green solvents.¹

RESULTS AND DISCUSSION

We have recently developed a new class of catalyst and their applications on organocatalytic process in aqueous media.² In the present work, we expanded our studies to evaluation in asymmetric Michael addition of aldehyde to β -nitrostyrene using PEG-400 (Table 1).

Table 1. Studies and Optimization of the ReactionParameters.

^[a]Isolated yield. ^[b]The *ee* values were determined by chiral HPLC. ^[c]The *d.r.* values were determined by ¹H NMR spectroscopy and HPLC. ^[d]The reaction was performed at room temperature; ^[e]1 mol% of catalyst **1a**. ^[f]5 mol% of catalyst **1a**.

The best reaction condition is show in entry 4 of table 1, by using 5 mol% of catalyst **1a** having PEG-400 as solvent in a 2M concentration. Others co-catalysts were also evaluated, however, benzoic acid delivered the desired product with superior

results. Trying to improve the *d.r* relationship, the structure of the organocatalyst was also evaluated.

 Table 2.
 Organocatalyst
 Screening
 for
 the
 Michael
 Addition

^[a]Isolated yield. ^[b]The *ee* values were determined by chiral HPLC. ^[c]The *d.r.* values were determined by ¹H NMR spectroscopy and HPLC.

From these results we could observed that catalyst **1a** and benzoic acid as co-catalyst delivered the desired product in excellent levels of selectivity.

CONCLUSION

In summary we have demonstrated a highly stereoselective Michael addition of aldehydes to β -nitrostyrene using PEG-400 as green solvent. Additional studies on both solvent and catalyst reusability are ongoing.

¹ Capelo, C.; Fisher, U.; Hungerbuhler, K. Green Chem., 2007, 9, 927.

² [a] Deobald, A. M.; Corrêa, A. G.; Rivera, D. G.; Paixão, M. W. *Org. Biomol. Chem.* **2012**, *10*, 7681. [b] Feu, K. S.; Deobald, A. M.; Narayanaperumal, S.; Corrêa, A. G.; Paixão, M. W. *Eur. J. Org. Chem.* **2013**, DOI: 10.1002/ejoc.201300431.

15th Brazilian Meeting on Organic Synthesis – 15th BMOS – November 10-13, 2013 - Campos do Jordão, Brazil