

Synthesis of New Diselenide Based Ester Derivatives: Biologically Potential Compounds

Sumbal Saba^{1,*} (PG), Jamal Rafique¹ (PG), Marcelo Godoi¹ (PG), Waseem Hassan² (PG), João Batista T. Rocha² (PQ) and Antonio L. Braga¹ (PQ)

¹ LabSelen–Lab. de Síntese de Substâncias Bioativas de Selênio, UFSC, Florianópolis 88040-970, SC, Brazil

² Dept. de Química, Centro de Ciências Naturais e Exatas, UFSM, Santa Maria 97105-900, RS, Brazil

*e-mail corresponding author: sumbal6s@gmail.com

Keywords: Esters, diselenides, antioxidant

INTRODUCTION

Interest in synthetic organoselenium compounds has been growing since the 1970s, when many reports described the identification of various selenoproteins, which are involved in a wide number of physiological processes in mammals, such as antioxidant defense, thyroid hormone production and immune responses^{1, 2}. There are many reports regarding the biological importance of diselenides having amide bond^{2, 3}. However, ester derivatives with diselenide moiety have not been explored.

Thus, according to our interest in bioactive organoselenium compounds⁴ as well as the versatile biological activities of esters, herein, we describe the synthesis of diselenide based esters **1** (Figure 1), as potentially bioactive molecules.

Figure 1. Diselenide based esters

RESULTS AND DISCUSSION

Initially, aliphatic diselenides containing free carboxylic acid 2a-b were prepared, from the reaction of the corresponding bromo carboxylic acids 3a-b with Na₂Se₂, generated *in situ*, from NaBH₄ and selenium (Scheme 1).

HO hBr NaBH4, Se
0
 HO hSe)₂
(3a) n=1 (2a) n=2 (2b) n=2. 50%

Scheme 2. Synthesis of diselenides of carboxylic acid

In the following step, esterification of diselenides containing free carboxylic acid **2a-b** with different alcohols **4** was carried out, using different coupling conditions. Best results were achieved by using DCC-DMAP in anhyd. DCM, resulted the desired diselenides **1** in very good yield (Scheme 2).

A number of diselenide based ester derivatives **1** were synthesized using various naturally occurring biologically active alcohols **4** (Table 1).

HO
$$(2)$$
 + ROH (4) DCC, DMAP (3) RO $(1a-j)$

Scheme 2. Synthesis of diselenide based ester

Table 1. Reaction of diselenide containing acid 2 and alcohol 3

Entry	Acid	ROH	Ester	Yield
	2	4	1	(%)
1	2a	β -Citronellol	1a	79
2	2a	Cholesterol	1b	75
3	2a	Cinnamyl alcohol	1c	75
4	2a	2-Hydroxymethylfurfural	1d	62
5	2a	Methyl (S)-(+)-mandelate	1e	65
6	2b	β -Citronellol	1f	83
7	2b	Cholesterol	1g	80
8	2b	Cinnamyl alcohol	1h	78
9	2b	2-Hydroxymethylfurfural	1i	68
10	2b	Methyl (S)-(+)-mandelate	1j	75

Initial experiments shows that these diselenides **1a-j** will be an excellent candidate to act as GPx-mimic. For example, in case of **1h**, the time required to reduce the concentration of thiol to 50% was 11.83 min at 100 μ M concentration.

CONCLUSION

We have prepared the desired diselenide based ester derivatives in very good yields using DCC-DMP as coupling reagents. According to the initial results diselenide **1h** can act as GPx-mimic, which reduce the concentration of thiol to 50% in 11.83 min at 100 μ M concentration.

ACKNOWLEDGEMENTS

CNPq, TWAS, UFSC, and INCT-Catálise

REFERENCES

- ¹ Jacob, C.; Giles, G. I.; Giles, N. M. e Sies H., *Angew. Chem. Int. Ed.*, **2003**, 42, 4742.
- Braga, A. L. e Rafique, J. in Patai's Chemistry of Functional Groups), ed
 Rappoport, John Wiley & Sons, Ltd., Chichester, 2013, vol. 4.
- Mugesh, G.; du Mont, W.-W. e Sies, H. Chem. Rev. 2001, 101, 2125.
 Kawasoko, C. Y.; Foletto, P.; Rodrigues, O. E. D.; Dornelles, I.; Schwab, R. S. Braga, A. L. Org. Biomol. Chem. 2013,11, 5173.